Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(n)=5*(-2)^(n-1)
Complete the recursive formula of 
f(n).

{:[f(1)=◻],[f(n)=f(n-1).]:}

f(n)=5(2)n1 f(n)=5 \cdot(-2)^{n-1} \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1) \begin{array}{l} f(1)=\square \\ f(n)=f(n-1) \cdot \square \end{array}

Full solution

Q. f(n)=5(2)n1 f(n)=5 \cdot(-2)^{n-1} \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1) \begin{array}{l} f(1)=\square \\ f(n)=f(n-1) \cdot \square \end{array}
  1. Given Sequence: We are given the explicit formula for a sequence: f(n)=5(2)n1f(n)=5\cdot(-2)^{n-1}. To find the recursive formula, we need to express f(n)f(n) in terms of the previous term f(n1)f(n-1).
  2. Find f(1)f(1): First, let's find the value of the first term f(1)f(1) by substituting n=1n=1 into the explicit formula.\newlinef(1)=5(2)11=5(2)0=51=5f(1) = 5 \cdot (-2)^{1-1} = 5 \cdot (-2)^0 = 5 \cdot 1 = 5
  3. Find f(2)f(2): Now, let's find the value of the second term f(2)f(2) to understand the relationship between consecutive terms.f(2)=5(2)21=5(2)1=5(2)=10f(2) = 5 \cdot (-2)^{2-1} = 5 \cdot (-2)^1 = 5 \cdot (-2) = -10
  4. Identify Common Ratio: We can see that to go from f(1)f(1) to f(2)f(2), we multiply f(1)f(1) by 2-2. This is the common ratio rr for the geometric sequence. So, the recursive formula will involve multiplying the previous term by 2-2.
  5. Recursive Formula: The recursive formula for the sequence can be written as:\newlinef(n)=f(n1)×(2)f(n) = f(n-1) \times (-2), for n > 1\newlineAnd we already know that f(1)=5f(1) = 5.
  6. Complete Recursive Formula: Therefore, the complete recursive formula for the sequence is: f(1)=5,f(n)=f(n1)×(2){f(1)=5}, {f(n)=f(n-1) \times (-2)} for n > 1

More problems from Write variable expressions for geometric sequences