Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(n)=-48*(-(1)/(4))^(n)
Complete the recursive formula of 
f(n).

{:[f(1)=◻],[f(n)=f(n-1)]:}

f(n)=48(14)n f(n)=-48 \cdot\left(-\frac{1}{4}\right)^{n} \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1) \begin{array}{l} f(1)=\square \\ f(n)=f(n-1) \cdot \square \end{array}

Full solution

Q. f(n)=48(14)n f(n)=-48 \cdot\left(-\frac{1}{4}\right)^{n} \newlineComplete the recursive formula of f(n) f(n) .\newlinef(1)=f(n)=f(n1) \begin{array}{l} f(1)=\square \\ f(n)=f(n-1) \cdot \square \end{array}
  1. Given explicit formula: We are given the explicit formula for the sequence:\newlinef(n)=48((14))nf(n) = -48 \cdot \left(-\left(\frac{1}{4}\right)\right)^n\newlineTo find the recursive formula, we need to express f(n)f(n) in terms of f(n1)f(n-1).\newlineFirst, let's find f(1)f(1) by substituting n=1n = 1 into the explicit formula.\newlinef(1)=48((14))1f(1) = -48 \cdot \left(-\left(\frac{1}{4}\right)\right)^1\newlinef(1)=48(14)f(1) = -48 \cdot \left(-\frac{1}{4}\right)\newlinef(1)=484f(1) = \frac{48}{4}\newlinef(1)=12f(1) = 12
  2. Find f(1)f(1): Now, let's find f(2)f(2) to see the relationship between f(2)f(2) and f(1)f(1).
    f(2)=48×((1/4))2f(2) = -48 \times (-(1/4))^2
    f(2)=48×(1/16)f(2) = -48 \times (1/16)
    f(2)=48/16f(2) = -48/16
    f(2)=3f(2) = -3
  3. Find f(2)f(2): We can see that to go from f(1)f(1) to f(2)f(2), we multiply f(1)f(1) by (14)-\left(\frac{1}{4}\right):
    f(2)=f(1)×(14)f(2) = f(1) \times -\left(\frac{1}{4}\right)
    f(2)=12×(14)f(2) = 12 \times -\left(\frac{1}{4}\right)
    f(2)=3f(2) = -3
    This relationship holds for each subsequent term in the sequence.
  4. Relationship between f(1)f(1) and f(2)f(2): Therefore, the recursive formula for the sequence is:\newlinef(1)=12f(1) = 12\newlinef(n)=f(n1)×(14)f(n) = f(n-1) \times -(\frac{1}{4}) for n > 1

More problems from Write variable expressions for geometric sequences