Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-44)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±44=± \pm \sqrt{-44}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±44=± \pm \sqrt{-44}= \pm \square
  1. Express as product of square roots: Express ±44\pm\sqrt{-44} as the product of square roots and 1\sqrt{-1}.\newline±44=±144\pm\sqrt{-44} = \pm\sqrt{-1 \cdot 44}
  2. Recognize 1\sqrt{-1} as ii: Recognize that 1\sqrt{-1} is the imaginary unit ii.
    ±144=±144\pm\sqrt{-1 \cdot 44} = \pm\sqrt{-1} \cdot \sqrt{44}
    = ±i44\pm i \cdot \sqrt{44}
  3. Simplify 44\sqrt{44}: Simplify 44\sqrt{44} by factoring it into 4×11\sqrt{4 \times 11}.\newline±i×44=±i×4×11\pm i \times \sqrt{44} = \pm i \times \sqrt{4 \times 11}\newline= ±i×4×11\pm i \times \sqrt{4} \times \sqrt{11}
  4. Calculate square root of 44: Calculate the square root of 44, which is 22.\newline±i411=±i211\pm i \cdot \sqrt{4} \cdot \sqrt{11} = \pm i \cdot 2 \cdot \sqrt{11}\newline=±2i11= \pm 2i \cdot \sqrt{11}
  5. Combine terms for final answer: Combine the terms to express the final answer in simplified form.\newline±2i×11=±2i11\pm 2i \times \sqrt{11} = \pm 2i\sqrt{11}

More problems from Introduction to complex numbers