Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-24)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±24=± \pm \sqrt{-24}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±24=± \pm \sqrt{-24}= \pm \square
  1. Express as product of square roots: Express ±24\pm\sqrt{-24} as the product of square roots and 1\sqrt{-1}.\newline±24=±124\pm\sqrt{-24} = \pm\sqrt{-1 \cdot 24}
  2. Factor 2424 into prime factors: Factor 2424 into its prime factors to simplify the square root.\newline24=23×324 = 2^3 \times 3\newlineSo, ±24=±23×3\pm\sqrt{24} = \pm\sqrt{2^3 \times 3}
  3. Simplify square root of 2424: Simplify the square root of 2424 by taking out the square root of 44 (which is a perfect square and a factor of 2424).\newline±23×3=±22×2×3\pm\sqrt{2^3 \times 3} = \pm\sqrt{2^2 \times 2 \times 3}\newline= ±2×2×3\pm 2 \times \sqrt{2 \times 3}\newline= ±2×6\pm 2 \times \sqrt{6}
  4. Express 1\sqrt{-1} as ii: Express ±1\pm\sqrt{-1} as the imaginary unit ii.±1=±i\pm\sqrt{-1} = \pm i
  5. Combine results: Combine the results from Step 33 and Step 44 to express the original expression as a complex number.\newline±24=±i26\pm\sqrt{-24} = \pm i \cdot 2 \cdot \sqrt{6}\newline=±2i6= \pm 2i \cdot \sqrt{6}

More problems from Introduction to complex numbers