Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
18
=
±
□
\pm \sqrt{-18}= \pm \square
±
−
18
=
±
□
View step-by-step help
Home
Math Problems
Algebra 2
Introduction to complex numbers
Full solution
Q.
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
18
=
±
□
\pm \sqrt{-18}= \pm \square
±
−
18
=
±
□
Express as product of square roots:
Express
±
−
18
\pm\sqrt{-18}
±
−
18
as the product of square roots and
−
1
\sqrt{-1}
−
1
.
±
−
18
=
±
−
1
×
18
\pm\sqrt{-18} = \pm\sqrt{-1 \times 18}
±
−
18
=
±
−
1
×
18
Recognize imaginary unit:
Recognize that
−
1
\sqrt{-1}
−
1
is the imaginary unit
i
i
i
.
±
−
18
=
±
−
1
×
18
\pm\sqrt{-18} = \pm\sqrt{-1} \times \sqrt{18}
±
−
18
=
±
−
1
×
18
=
±
i
×
18
= \pm i \times \sqrt{18}
=
±
i
×
18
Simplify
18
\sqrt{18}
18
:
Simplify
18
\sqrt{18}
18
by factoring it into
9
×
2
\sqrt{9 \times 2}
9
×
2
.
±
18
=
±
9
×
2
\pm\sqrt{18} = \pm\sqrt{9} \times \sqrt{2}
±
18
=
±
9
×
2
=
±
3
×
2
\pm3 \times \sqrt{2}
±
3
×
2
Combine with imaginary unit:
Combine the simplified
square root
with the imaginary unit
i
i
i
.
±
i
×
18
=
±
i
×
3
×
2
\pm i \times \sqrt{18} = \pm i \times 3 \times \sqrt{2}
±
i
×
18
=
±
i
×
3
×
2
=
±
3
i
×
2
= \pm 3i \times \sqrt{2}
=
±
3
i
×
2
Write final simplified expression:
Write the final simplified expression.
±
3
i
×
2
\pm 3i \times \sqrt{2}
±
3
i
×
2
is the simplified form of
±
−
18
\pm\sqrt{-18}
±
−
18
using the imaginary unit
i
i
i
.
More problems from Introduction to complex numbers
Question
What is the period of
y
=
3
cos
(
x
−
7
)
+
2
y=3 \cos (x-7)+2
y
=
3
cos
(
x
−
7
)
+
2
?
\newline
Give an exact value.
\newline
units
Get tutor help
Posted 10 months ago
Question
(
−
10
i
)
+
(
−
40
+
8
i
)
=
(-10 i)+(-40+8 i)=
(
−
10
i
)
+
(
−
40
+
8
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
8
−
i
)
−
(
−
82
+
2
i
)
=
(8-i)-(-82+2 i)=
(
8
−
i
)
−
(
−
82
+
2
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
(
80
i
)
−
(
80
+
10
i
)
=
(80 i)-(80+10 i)=
(
80
i
)
−
(
80
+
10
i
)
=
\newline
Express your answer in the form
(
a
+
b
i
)
(a+b i)
(
a
+
bi
)
.
Get tutor help
Posted 10 months ago
Question
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
64
=
±
\pm \sqrt{-64}= \pm
±
−
64
=
±
Get tutor help
Posted 10 months ago
Question
Which of the following is equivalent to the complex number
i
21
i^{21}
i
21
?
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
i
i
i
\newline
(C)
−
1
-1
−
1
\newline
(D)
−
i
-i
−
i
Get tutor help
Posted 10 months ago
Question
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
30
=
±
\pm \sqrt{-30}= \pm
±
−
30
=
±
Get tutor help
Posted 10 months ago
Question
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
35
=
±
\pm \sqrt{-35}= \pm
±
−
35
=
±
Get tutor help
Posted 10 months ago
Question
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
80
=
±
\pm \sqrt{-80}= \pm
±
−
80
=
±
Get tutor help
Posted 10 months ago
Question
Express the radical using the imaginary unit,
i
i
i
.
\newline
Express your answer in simplified form.
\newline
±
−
4
=
±
\pm \sqrt{-4}= \pm
±
−
4
=
±
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant