Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-18)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±18=± \pm \sqrt{-18}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±18=± \pm \sqrt{-18}= \pm \square
  1. Express as product of square roots: Express ±18\pm\sqrt{-18} as the product of square roots and 1\sqrt{-1}. ±18=±1×18\pm\sqrt{-18} = \pm\sqrt{-1 \times 18}
  2. Recognize imaginary unit: Recognize that 1\sqrt{-1} is the imaginary unit ii.±18=±1×18\pm\sqrt{-18} = \pm\sqrt{-1} \times \sqrt{18}=±i×18= \pm i \times \sqrt{18}
  3. Simplify 18\sqrt{18}: Simplify 18\sqrt{18} by factoring it into 9×2\sqrt{9 \times 2}.±18=±9×2\pm\sqrt{18} = \pm\sqrt{9} \times \sqrt{2}= ±3×2\pm3 \times \sqrt{2}
  4. Combine with imaginary unit: Combine the simplified square root with the imaginary unit ii.±i×18=±i×3×2\pm i \times \sqrt{18} = \pm i \times 3 \times \sqrt{2}=±3i×2= \pm 3i \times \sqrt{2}
  5. Write final simplified expression: Write the final simplified expression. ±3i×2\pm 3i \times \sqrt{2} is the simplified form of ±18\pm\sqrt{-18} using the imaginary unit ii.

More problems from Introduction to complex numbers