Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express the radical using the imaginary unit, 
i.
Express your answer in simplified form.

+-sqrt(-25)=+-◻

Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±25=± \pm \sqrt{-25}= \pm \square

Full solution

Q. Express the radical using the imaginary unit, i i .\newlineExpress your answer in simplified form.\newline±25=± \pm \sqrt{-25}= \pm \square
  1. Recognize imaginary unit i i : Recognize that the square root of a negative number involves the imaginary unit i i , where i2=1 i^2 = -1 .\newline±25 \pm\sqrt{-25} can be rewritten as ±125 \pm\sqrt{-1 \cdot 25} .
  2. Separate square root of product: Separate the square root of the product into the product of square roots. ±1×25=±1×25\pm\sqrt{-1 \times 25} = \pm\sqrt{-1} \times \sqrt{25}.
  3. Simplify square roots: Simplify the square roots.\newlineSince 1\sqrt{-1} is the imaginary unit ii and 25\sqrt{25} is 55, we have:\newline±125=±(i5)\pm\sqrt{-1} \cdot \sqrt{25} = \pm(i \cdot 5).
  4. Combine terms for final answer: Combine the terms to express the final answer. ±i×5=±5i\pm i \times 5 = \pm 5i.

More problems from Introduction to complex numbers