Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Exercise 1.10. Verify that with 
sigma=(12),tau=(123), the standard representation has a basis 
alpha=(omega,1,omega^(2)),beta=(1,omega,omega^(2)), with

tau alpha=omega alpha,quad tau beta=omega^(2)beta,quad sigma alpha=beta,quad sigma beta=alpha

Verify that with σ=(12)\sigma=(1\,2), τ=(123)\tau=(1\,2\,3), the standard representation has a basis α=(ω,1,ω2)\alpha=(\omega,1,\omega^{2}), β=(1,ω,ω2)\beta=(1,\omega,\omega^{2}), with τα=ωα\tau \alpha=\omega \alpha, τβ=ω2β\tau \beta=\omega^{2}\beta, σα=β\sigma \alpha=\beta, σβ=α\sigma \beta=\alpha

Full solution

Q. Verify that with σ=(12)\sigma=(1\,2), τ=(123)\tau=(1\,2\,3), the standard representation has a basis α=(ω,1,ω2)\alpha=(\omega,1,\omega^{2}), β=(1,ω,ω2)\beta=(1,\omega,\omega^{2}), with τα=ωα\tau \alpha=\omega \alpha, τβ=ω2β\tau \beta=\omega^{2}\beta, σα=β\sigma \alpha=\beta, σβ=α\sigma \beta=\alpha
  1. Problem Understanding: Understand the problem and the notation.\newlineWe are given two permutations σ\sigma and τ\tau, and two vectors α\alpha and β\beta. We need to verify that these vectors satisfy certain properties when acted upon by the permutations. The permutations are given in cycle notation, and ω\omega is a complex cube root of unity, meaning ω3=1\omega^3 = 1 and ω1\omega \neq 1. The properties to verify are:\newlineτα=ωα\tau * \alpha = \omega * \alpha,\newlineτβ=ω2β\tau * \beta = \omega^2 * \beta,\newlineσα=β\sigma * \alpha = \beta,\newlineτ\tau00.
  2. Calculate τα\tau \cdot \alpha: Calculate τα\tau \cdot \alpha. The permutation τ=(123)\tau = (123) means that the first element goes to the second position, the second goes to the third, and the third goes back to the first. Applying τ\tau to α\alpha gives us: τα=(ω2,ω,1)\tau \cdot \alpha = (\omega^2, \omega, 1). Since ω\omega is a cube root of unity, multiplying by ω\omega gives us: ωα=(ω2,1,ω)\omega \cdot \alpha = (\omega^2, 1, \omega). Comparing the two results, we see that τα=ωα\tau \cdot \alpha = \omega \cdot \alpha.
  3. Calculate τβ\tau \cdot \beta: Calculate τβ\tau \cdot \beta.\newlineApplying τ\tau to β\beta gives us:\newlineτβ=(ω2,1,ω)\tau \cdot \beta = (\omega^2, 1, \omega).\newlineMultiplying β\beta by ω2\omega^2 gives us:\newlineω2β=(ω2,1,ω)\omega^2 \cdot \beta = (\omega^2, 1, \omega).\newlineComparing the two results, we see that τβ=ω2β\tau \cdot \beta = \omega^2 \cdot \beta.
  4. Calculate σα\sigma \cdot \alpha: Calculate σα\sigma \cdot \alpha. The permutation σ=(12)\sigma = (1\,2) means that the first element swaps with the second, and the third element remains unchanged. Applying σ\sigma to α\alpha gives us: σα=(1,ω,ω2)\sigma \cdot \alpha = (1, \omega, \omega^2). This is exactly the vector β\beta, so σα=β\sigma \cdot \alpha = \beta.
  5. Calculate σ×β\sigma \times \beta: Calculate σ×β\sigma \times \beta.\newlineApplying σ\sigma to β\beta gives us:\newlineσ×β=(ω,1,ω2)\sigma \times \beta = (\omega, 1, \omega^2).\newlineThis is exactly the vector α\alpha, so σ×β=α\sigma \times \beta = \alpha.

More problems from Find derivatives of sine and cosine functions