Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate the integral 
int(x+4)/(5x+5)dx.
Choose 1 answer:
(A) 
(1)/(5)x+(1)/(5)ln |x+1|+C
(B) 
(1)/(5)x+(2)/(5)ln |x+1|+C
(C) 
(1)/(5)x+(3)/(5)ln |x+1|+C
(D) 
(1)/(5)x+(4)/(5)ln |x+1|+C

Evaluate the integral x+45x+5dx \int \frac{x+4}{5 x+5} d x .\newlineChoose 11 answer:\newline(A) 15x+15lnx+1+C \frac{1}{5} x+\frac{1}{5} \ln |x+1|+C \newline(B) 15x+25lnx+1+C \frac{1}{5} x+\frac{2}{5} \ln |x+1|+C \newline(C) 15x+35lnx+1+C \frac{1}{5} x+\frac{3}{5} \ln |x+1|+C \newline(D) 15x+45lnx+1+C \frac{1}{5} x+\frac{4}{5} \ln |x+1|+C

Full solution

Q. Evaluate the integral x+45x+5dx \int \frac{x+4}{5 x+5} d x .\newlineChoose 11 answer:\newline(A) 15x+15lnx+1+C \frac{1}{5} x+\frac{1}{5} \ln |x+1|+C \newline(B) 15x+25lnx+1+C \frac{1}{5} x+\frac{2}{5} \ln |x+1|+C \newline(C) 15x+35lnx+1+C \frac{1}{5} x+\frac{3}{5} \ln |x+1|+C \newline(D) 15x+45lnx+1+C \frac{1}{5} x+\frac{4}{5} \ln |x+1|+C
  1. Simplify the integrand: Simplify the integrand by factoring out the common factor in the denominator. \int\frac{x+\(4\)}{\(5\)x+\(5\)}\,dx = \int\frac{x+\(4\)}{\(5\)(x+\(1\))}\,dx
  2. Divide numerator by denominator: Divide each term in the numerator by the denominator.\(\newlinex+45(x+1)dx=15(xx+1+4x+1)dx\int\frac{x+4}{5(x+1)}dx = \frac{1}{5}\int\left(\frac{x}{x+1} + \frac{4}{x+1}\right)dx
  3. Split into two integrals: Split the integral into two separate integrals.\newline(\frac{\(1\)}{\(5\)})\int(\frac{x}{x+\(1\)} + \frac{\(4\)}{x+\(1\)})dx = (\frac{\(1\)}{\(5\)})\int(\frac{x}{x+\(1\)})dx + (\frac{\(1\)}{\(5\)})\int(\frac{\(4\)}{x+\(1\)})dx
  4. Recognize derivative of natural log: The first integral is the integral of \(\frac{x}{x+1}. We can simplify this by recognizing it as a derivative of a natural log.\newline\int\left(\frac{x}{x+\(1\)}\right)dx = \ln|x+\(1| + C

More problems from Find derivatives of using multiple formulae