Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int(x^(3)-3x^(2)+5x-3)/(x-1)dx.
Choose 1 answer:
(A) 
(x^(3))/(3)-x^(2)+3x+C
(B) 
(x^(3))/(3)-x^(2)+3x+ln |x-1|+C
C) 
(x^(3))/(3)-x^(2)+3x-2ln |x-1|+C
(D) 
(x^(3))/(3)-2x^(2)+3x+ln |x-1|+C

Evaluate x33x2+5x3x1dx \int \frac{x^{3}-3 x^{2}+5 x-3}{x-1} d x .\newlineChoose 11 answer:\newline(A) x33x2+3x+C \frac{x^{3}}{3}-x^{2}+3 x+C \newline(B) x33x2+3x+lnx1+C \frac{x^{3}}{3}-x^{2}+3 x+\ln |x-1|+C \newlineC) x33x2+3x2lnx1+C \frac{x^{3}}{3}-x^{2}+3 x-2 \ln |x-1|+C \newline(D) x332x2+3x+lnx1+C \frac{x^{3}}{3}-2 x^{2}+3 x+\ln |x-1|+C

Full solution

Q. Evaluate x33x2+5x3x1dx \int \frac{x^{3}-3 x^{2}+5 x-3}{x-1} d x .\newlineChoose 11 answer:\newline(A) x33x2+3x+C \frac{x^{3}}{3}-x^{2}+3 x+C \newline(B) x33x2+3x+lnx1+C \frac{x^{3}}{3}-x^{2}+3 x+\ln |x-1|+C \newlineC) x33x2+3x2lnx1+C \frac{x^{3}}{3}-x^{2}+3 x-2 \ln |x-1|+C \newline(D) x332x2+3x+lnx1+C \frac{x^{3}}{3}-2 x^{2}+3 x+\ln |x-1|+C
  1. Simplify integrand: First, let's try to simplify the integrand by doing polynomial long division of (x33x2+5x3)(x^3 - 3x^2 + 5x - 3) by (x1)(x - 1).
  2. Divide by x1x - 1: After dividing x3x^3 by xx, we get x2x^2. Multiply x2x^2 by (x1)(x - 1) to get x3x2x^3 - x^2. Subtract this from the original polynomial to get 2x2+5x3-2x^2 + 5x - 3.
  3. Divide by xx: Next, divide 2x2-2x^2 by xx to get 2x-2x. Multiply 2x-2x by (x1)(x - 1) to get 2x2+2x-2x^2 + 2x. Subtract this from 2x2+5x3-2x^2 + 5x - 3 to get 3x33x - 3.
  4. Integrate quotient: Now, divide 3x3x by xx to get 33. Multiply 33 by (x1)(x - 1) to get 3x33x - 3. Subtract this from 3x33x - 3 to get 00. So, the quotient is x22x+3x^2 - 2x + 3 and the remainder is 00.
  5. Add constant of integration: The integral of the quotient x22x+3x^2 - 2x + 3 is x33x2+3x\frac{x^3}{3} - x^2 + 3x. Since there's no remainder, we don't need to add any additional terms involving lnx1\ln|x - 1|.
  6. Add constant of integration: The integral of the quotient x22x+3x^2 - 2x + 3 is (x3)/3x2+3x(x^3)/3 - x^2 + 3x. Since there's no remainder, we don't need to add any additional terms involving lnx1\ln|x - 1|. Finally, we add the constant of integration CC to our result. The integral is (x3)/3x2+3x+C(x^3)/3 - x^2 + 3x + C.

More problems from Find derivatives of using multiple formulae