Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Evaluate
∫
2
x
3
+
4
x
2
−
5
x
+
3
d
x
\int \frac{2 x^{3}+4 x^{2}-5}{x+3} d x
∫
x
+
3
2
x
3
+
4
x
2
−
5
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
x
3
3
−
1
2
x
2
+
6
x
+
13
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-\frac{1}{2} x^{2}+6 x+13 \ln |x+3|+C
3
2
x
3
−
2
1
x
2
+
6
x
+
13
ln
∣
x
+
3∣
+
C
\newline
(B)
2
x
3
3
−
x
2
+
6
x
+
13
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}+6 x+13 \ln |x+3|+C
3
2
x
3
−
x
2
+
6
x
+
13
ln
∣
x
+
3∣
+
C
\newline
(C)
2
x
3
3
−
x
2
+
6
x
−
23
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}+6 x-23 \ln |x+3|+C
3
2
x
3
−
x
2
+
6
x
−
23
ln
∣
x
+
3∣
+
C
\newline
(D)
2
x
3
3
−
x
2
−
6
x
−
23
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}-6 x-23 \ln |x+3|+C
3
2
x
3
−
x
2
−
6
x
−
23
ln
∣
x
+
3∣
+
C
View step-by-step help
Home
Math Problems
Calculus
Find derivatives of using multiple formulae
Full solution
Q.
Evaluate
∫
2
x
3
+
4
x
2
−
5
x
+
3
d
x
\int \frac{2 x^{3}+4 x^{2}-5}{x+3} d x
∫
x
+
3
2
x
3
+
4
x
2
−
5
d
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
x
3
3
−
1
2
x
2
+
6
x
+
13
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-\frac{1}{2} x^{2}+6 x+13 \ln |x+3|+C
3
2
x
3
−
2
1
x
2
+
6
x
+
13
ln
∣
x
+
3∣
+
C
\newline
(B)
2
x
3
3
−
x
2
+
6
x
+
13
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}+6 x+13 \ln |x+3|+C
3
2
x
3
−
x
2
+
6
x
+
13
ln
∣
x
+
3∣
+
C
\newline
(C)
2
x
3
3
−
x
2
+
6
x
−
23
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}+6 x-23 \ln |x+3|+C
3
2
x
3
−
x
2
+
6
x
−
23
ln
∣
x
+
3∣
+
C
\newline
(D)
2
x
3
3
−
x
2
−
6
x
−
23
ln
∣
x
+
3
∣
+
C
\frac{2 x^{3}}{3}-x^{2}-6 x-23 \ln |x+3|+C
3
2
x
3
−
x
2
−
6
x
−
23
ln
∣
x
+
3∣
+
C
Polynomial Long Division:
First, let's try to simplify the integral by doing polynomial
long division
for
(
2
x
3
+
4
x
2
−
5
)
(2x^3 + 4x^2 - 5)
(
2
x
3
+
4
x
2
−
5
)
divided by
(
x
+
3
)
(x + 3)
(
x
+
3
)
.
Simplify Result:
After dividing, we get
2
x
2
−
2
x
+
10
−
(
32
x
+
3
)
2x^2 - 2x + 10 - \left(\frac{32}{x + 3}\right)
2
x
2
−
2
x
+
10
−
(
x
+
3
32
)
.
Integrate Terms Separately:
Now, let's integrate each term separately:
∫
2
x
2
d
x
\int 2x^2 \, dx
∫
2
x
2
d
x
,
−
∫
2
x
d
x
-\int 2x \, dx
−
∫
2
x
d
x
,
∫
10
d
x
\int 10 \, dx
∫
10
d
x
, and
−
∫
32
x
+
3
d
x
-\int \frac{32}{x + 3} \, dx
−
∫
x
+
3
32
d
x
.
Integrate
2
x
2
2x^2
2
x
2
:
Integrating
∫
2
x
2
d
x
\int 2x^2 \, dx
∫
2
x
2
d
x
gives us
2
3
x
3
\frac{2}{3}x^3
3
2
x
3
.
Integrate
−
2
x
-2x
−
2
x
:
Integrating
−
∫
2
x
d
x
-\int 2x \, dx
−
∫
2
x
d
x
gives us
−
x
2
-x^2
−
x
2
.
Integrate
10
10
10
:
Integrating
∫
10
d
x
\int 10 \, dx
∫
10
d
x
gives us
10
x
10x
10
x
.
Integrate
−
32
x
+
3
-\frac{32}{x + 3}
−
x
+
3
32
:
Integrating
−
∫
(
32
x
+
3
)
d
x
-\int\left(\frac{32}{x + 3}\right) dx
−
∫
(
x
+
3
32
)
d
x
gives us
−
32
ln
∣
x
+
3
∣
-32 \ln|x + 3|
−
32
ln
∣
x
+
3∣
.
Combine Integrated Parts:
Adding all the integrated parts together, we get
(
2
3
)
x
3
−
x
2
+
10
x
−
32
ln
∣
x
+
3
∣
+
C
(\frac{2}{3})x^3 - x^2 + 10x - 32 \ln|x + 3| + C
(
3
2
)
x
3
−
x
2
+
10
x
−
32
ln
∣
x
+
3∣
+
C
.
More problems from Find derivatives of using multiple formulae
Question
Find
lim
θ
→
π
2
tan
2
(
θ
)
[
1
−
sin
(
θ
)
]
\lim_{\theta \rightarrow \frac{\pi}{2}} \tan ^{2}(\theta)[1-\sin (\theta)]
lim
θ
→
2
π
tan
2
(
θ
)
[
1
−
sin
(
θ
)]
.
\newline
Choose
1
1
1
answer:
\newline
(A)
0
0
0
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
−
2
-2
−
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
2
sin
2
(
2
θ
)
1
−
sin
2
(
θ
)
\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin ^{2}(2 \theta)}{1-\sin ^{2}(\theta)}
lim
θ
→
2
π
1
−
s
i
n
2
(
θ
)
s
i
n
2
(
2
θ
)
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
2
2
2
\newline
(C)
4
4
4
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
3
x
−
3
4
x
+
4
−
4
\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{4 x+4}-4}
lim
x
→
3
4
x
+
4
−
4
x
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
4
-4
−
4
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
4
7
x
+
28
x
2
+
x
−
12
\lim _{x \rightarrow-4} \frac{7 x+28}{x^{2}+x-12}
lim
x
→
−
4
x
2
+
x
−
12
7
x
+
28
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
1
1
\newline
(B)
7
7
7
\newline
(C)
−
1
-1
−
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
3
x
+
3
4
−
2
x
+
22
\lim _{x \rightarrow-3} \frac{x+3}{4-\sqrt{2 x+22}}
lim
x
→
−
3
4
−
2
x
+
22
x
+
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
−
3
-3
−
3
\newline
(B)
−
4
-4
−
4
\newline
(C)
−
3
4
-\frac{3}{4}
−
4
3
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
1
5
x
+
4
−
3
x
−
1
\lim _{x \rightarrow 1} \frac{\sqrt{5 x+4}-3}{x-1}
lim
x
→
1
x
−
1
5
x
+
4
−
3
.
\newline
Choose
1
1
1
answer:
\newline
(A)
3
5
\frac{3}{5}
5
3
\newline
(B)
5
6
\frac{5}{6}
6
5
\newline
(C)
1
1
1
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
−
2
x
3
+
3
x
2
+
2
x
x
+
2
\lim _{x \rightarrow-2} \frac{x^{3}+3 x^{2}+2 x}{x+2}
lim
x
→
−
2
x
+
2
x
3
+
3
x
2
+
2
x
.
\newline
Choose
1
1
1
answer:
\newline
(A)
6
6
6
\newline
(B)
0
0
0
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
cot
2
(
x
)
1
−
sin
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot ^{2}(x)}{1-\sin (x)}
lim
x
→
2
π
1
−
s
i
n
(
x
)
c
o
t
2
(
x
)
\newline
Choose
1
1
1
answer:
\newline
(A)
−
1
-1
−
1
\newline
(B)
−
π
2
-\frac{\pi}{2}
−
2
π
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
x
→
π
2
sin
(
2
x
)
cos
(
x
)
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (2 x)}{\cos (x)}
lim
x
→
2
π
c
o
s
(
x
)
s
i
n
(
2
x
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
1
2
\frac{1}{2}
2
1
\newline
(B)
1
1
1
\newline
(C)
2
2
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Question
Find
lim
θ
→
π
4
cos
(
2
θ
)
2
cos
(
θ
)
−
1
\lim _{\theta \rightarrow \frac{\pi}{4}} \frac{\cos (2 \theta)}{\sqrt{2} \cos (\theta)-1}
lim
θ
→
4
π
2
c
o
s
(
θ
)
−
1
c
o
s
(
2
θ
)
.
\newline
Choose
1
1
1
answer:
\newline
(A)
2
2
2
\newline
(B)
1
2
\frac{1}{2}
2
1
\newline
(C)
2
\sqrt{2}
2
\newline
(D) The limit doesn't exist
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant