Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
int(2x^(3)-3x^(2)-3x+2)/(x-2)dx.
Choose 1 answer:
(A) 
(2x^(3))/(3)+(x^(2))/(2)-x+C
(B) 
(2x^(3))/(3)-(x^(2))/(2)+x+ln |x-2|+C
(C) 
(2x^(3))/(3)+(5x^(2))/(2)-x+C
(D) 
(2x^(3))/(3)-(x^(2))/(2)-x+ln |x-2|+C

Evaluate 2x33x23x+2x2dx \int \frac{2 x^{3}-3 x^{2}-3 x+2}{x-2} d x .\newlineChoose 11 answer:\newline(A) 2x33+x22x+C \frac{2 x^{3}}{3}+\frac{x^{2}}{2}-x+C \newline(B) 2x33x22+x+lnx2+C \frac{2 x^{3}}{3}-\frac{x^{2}}{2}+x+\ln |x-2|+C \newline(C) 2x33+5x22x+C \frac{2 x^{3}}{3}+\frac{5 x^{2}}{2}-x+C \newline(D) 2x33x22x+lnx2+C \frac{2 x^{3}}{3}-\frac{x^{2}}{2}-x+\ln |x-2|+C

Full solution

Q. Evaluate 2x33x23x+2x2dx \int \frac{2 x^{3}-3 x^{2}-3 x+2}{x-2} d x .\newlineChoose 11 answer:\newline(A) 2x33+x22x+C \frac{2 x^{3}}{3}+\frac{x^{2}}{2}-x+C \newline(B) 2x33x22+x+lnx2+C \frac{2 x^{3}}{3}-\frac{x^{2}}{2}+x+\ln |x-2|+C \newline(C) 2x33+5x22x+C \frac{2 x^{3}}{3}+\frac{5 x^{2}}{2}-x+C \newline(D) 2x33x22x+lnx2+C \frac{2 x^{3}}{3}-\frac{x^{2}}{2}-x+\ln |x-2|+C
  1. Polynomial Long Division: First, let's try polynomial long division to simplify the integrand.\newlineDivide 2x32x^3 by xx to get 2x22x^2. Multiply (x2)(x-2) by 2x22x^2 to get 2x34x22x^3 - 4x^2. Subtract this from the original polynomial to get x23x+2x^2 - 3x + 2.
  2. Simplify Remainder: Now, divide x2x^2 by xx to get xx. Multiply (x2)(x-2) by xx to get x22xx^2 - 2x. Subtract this from the remainder to get x+2-x + 2.
  3. Integrate Quotient: Finally, divide x-x by xx to get 1-1. Multiply (x2)(x-2) by 1-1 to get x+2-x + 2. Subtract this from the remainder to get 00. So the quotient is 2x2+x12x^2 + x - 1 and the remainder is 00.
  4. Final Integration: Now we integrate the quotient 2x2+x12x^2 + x - 1 term by term.\newlineThe integral of 2x22x^2 is (23)x3(\frac{2}{3})x^3, the integral of xx is (12)x2(\frac{1}{2})x^2, and the integral of 1-1 is x-x. Don't forget the constant of integration CC.
  5. Final Integration: Now we integrate the quotient 2x2+x12x^2 + x - 1 term by term.\newlineThe integral of 2x22x^2 is (2/3)x3(2/3)x^3, the integral of xx is (1/2)x2(1/2)x^2, and the integral of 1-1 is x-x. Don't forget the constant of integration CC.So the integral of (2x33x23x+2)/(x2)dx(2x^{3}-3x^{2}-3x+2)/(x-2)dx is $(\(2\)/\(3\))x^\(3\) + (\(1\)/\(2\))x^\(2\) - x + C.

More problems from Find derivatives of using multiple formulae