Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
(d)/(dx)[arctan(2x)] at 
x=-2.
Use an exact expression.

Evaluate ddx[arctan(2x)] \frac{d}{d x}[\arctan (2 x)] at x=2 x=-2 .\newlineUse an exact expression.

Full solution

Q. Evaluate ddx[arctan(2x)] \frac{d}{d x}[\arctan (2 x)] at x=2 x=-2 .\newlineUse an exact expression.
  1. Apply Chain Rule: Use the chain rule to differentiate arctan(2x)\arctan(2x).f(x)=ddx[arctan(2x)]=11+(2x)2ddx(2x)f'(x) = \frac{d}{dx}[\arctan(2x)] = \frac{1}{1+(2x)^2} \cdot \frac{d}{dx}(2x)
  2. Differentiate 2x2x: Differentiate 2x2x with respect to xx.ddx(2x)=2\frac{d}{dx}(2x) = 2
  3. Substitute Derivative: Substitute the derivative of 2x2x into the chain rule result.\newlinef(x)=11+(2x)2×2f'(x) = \frac{1}{1+(2x)^2} \times 2
  4. Simplify Expression: Simplify the expression for the derivative. f(x)=21+4x2f'(x) = \frac{2}{1+4x^2}
  5. Evaluate at x=2x = -2: Evaluate the derivative at x=2x = -2.f(2)=21+4(2)2f'(-2) = \frac{2}{1+4(-2)^2}
  6. Calculate Value: Calculate the value inside the parentheses.\newline4(2)2=4×4=164(-2)^2 = 4\times4 = 16
  7. Substitute Value: Substitute the calculated value back into the derivative. f(2)=21+16f'(-2) = \frac{2}{1+16}
  8. Add Denominator: Add the values in the denominator. 1+16=171+16 = 17
  9. Complete Calculation: Complete the calculation for the derivative at x=2x = -2.\newlinef(2)=217f'(-2) = \frac{2}{17}

More problems from Find derivatives of inverse trigonometric functions