Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate 
(d)/(dx)[arcsin((x)/(6))] at 
x=4.
Use an exact expression.

Evaluate ddx[arcsin(x6)] \frac{d}{d x}\left[\arcsin \left(\frac{x}{6}\right)\right] at x=4 x=4 .\newlineUse an exact expression.

Full solution

Q. Evaluate ddx[arcsin(x6)] \frac{d}{d x}\left[\arcsin \left(\frac{x}{6}\right)\right] at x=4 x=4 .\newlineUse an exact expression.
  1. Find Derivative of f(x)f(x): step_1: Find the derivative of f(x)=arcsin(x6)f(x) = \arcsin\left(\frac{x}{6}\right).\newlineThe derivative of arcsin(u)\arcsin(u) with respect to xx is 11u2dudx\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}.\newlineSo, f(x)=11(x6)2(16)f'(x) = \frac{1}{\sqrt{1-\left(\frac{x}{6}\right)^2}} \cdot \left(\frac{1}{6}\right).
  2. Simplify Derivative: step_2: Simplify the derivative. f(x)=11x23616f'(x) = \frac{1}{\sqrt{1-\frac{x^2}{36}}} \cdot \frac{1}{6}.
  3. Evaluate at x=4x=4: step_3: Evaluate the derivative at x=4x=4.f(4)=114236×(16)f'(4) = \frac{1}{\sqrt{1-\frac{4^2}{36}}} \times \left(\frac{1}{6}\right).
  4. Calculate Value: step_4: Calculate the value.\newlinef(4)=111636(16)f'(4) = \frac{1}{\sqrt{1-\frac{16}{36}}} \cdot \left(\frac{1}{6}\right).\newlinef(4)=1149(16)f'(4) = \frac{1}{\sqrt{1-\frac{4}{9}}} \cdot \left(\frac{1}{6}\right).\newlinef(4)=159(16)f'(4) = \frac{1}{\sqrt{\frac{5}{9}}} \cdot \left(\frac{1}{6}\right).\newlinef(4)=15/3(16)f'(4) = \frac{1}{\sqrt{5}/3} \cdot \left(\frac{1}{6}\right).\newlinef(4)=365f'(4) = \frac{3}{6\sqrt{5}}.\newlinef(4)=125f'(4) = \frac{1}{2\sqrt{5}}.

More problems from Find derivatives of inverse trigonometric functions