Q. Evaluate dxd[arcsin(6x)] at x=4.Use an exact expression.
Find Derivative of f(x): step_1: Find the derivative of f(x)=arcsin(6x).The derivative of arcsin(u) with respect to x is 1−u21⋅dxdu.So, f′(x)=1−(6x)21⋅(61).
Simplify Derivative: step_2: Simplify the derivative. f′(x)=1−36x21⋅61.
Evaluate at x=4: step_3: Evaluate the derivative at x=4.f′(4)=1−36421×(61).
Calculate Value: step_4: Calculate the value.f′(4)=1−36161⋅(61).f′(4)=1−941⋅(61).f′(4)=951⋅(61).f′(4)=5/31⋅(61).f′(4)=653.f′(4)=251.
More problems from Find derivatives of inverse trigonometric functions