Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.

(-7)^((5)/(3))*((1)/(56))^((5)/(3))=

Evaluate.\newline(7)53(156)53= (-7)^{\frac{5}{3}} \cdot\left(\frac{1}{56}\right)^{\frac{5}{3}}=

Full solution

Q. Evaluate.\newline(7)53(156)53= (-7)^{\frac{5}{3}} \cdot\left(\frac{1}{56}\right)^{\frac{5}{3}}=
  1. Identify Equation: Identify the equation and apply the property of exponents for multiplication.\newlineWe have two terms with the same exponent, so we can combine them under the same exponent:\newline(\(-7)^{\frac{55}{33}} \times \left(\frac{11}{5656}\right)^{\frac{55}{33}} = \left[(7-7) \times \left(\frac{11}{5656}\right)\right]^{\frac{55}{33}}
  2. Simplify Multiplication: Simplify the multiplication inside the brackets.\newline(7)×(1/56)=1/8(-7) \times (1/56) = -1/8
  3. Write Single Power: Write the simplified multiplication as a single power.\newline[(7)×(1/56)]5/3=(1/8)5/3[(-7) \times (1/56)]^{5/3} = (-1/8)^{5/3}
  4. Break Down Exponent: Break down the exponent (5/3)(5/3) into a whole number part and a fractional part.\newlineThe exponent 5/35/3 can be thought of as an exponent of 11 (the cube root) followed by an exponent of 55 (raising to the fifth power):\newline(1/8)(5/3)=[(1/8)(1/3)]5(-1/8)^{(5/3)} = [(-1/8)^{(1/3)}]^5
  5. Calculate Cube Root: Calculate the cube root of 18-\frac{1}{8}. The cube root of 1-1 is 1-1, and the cube root of 18\frac{1}{8} is 12\frac{1}{2}, so: (18)13=12(-\frac{1}{8})^{\frac{1}{3}} = -\frac{1}{2}
  6. Raise to Fifth Power: Raise the result of the cube root to the fifth power. (12)5=132(-\frac{1}{2})^5 = -\frac{1}{32}

More problems from Simplify radical expressions involving fractions