Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

E=[[1,-1,5],[5,5,0]] and 
F=[[-2,-1],[5,2],[5,-2]] Let 
H=EF. Find 
H.

H=

E=[1amp;1amp;55amp;5amp;0] \mathrm{E}=\left[\begin{array}{rrr}1 & -1 & 5 \\ 5 & 5 & 0\end{array}\right] and F=[2amp;15amp;25amp;2] F=\left[\begin{array}{rr}-2 & -1 \\ 5 & 2 \\ 5 & -2\end{array}\right] \newlineLet H=EF \mathrm{H}=\mathrm{EF} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. E=[115550] \mathrm{E}=\left[\begin{array}{rrr}1 & -1 & 5 \\ 5 & 5 & 0\end{array}\right] and F=[215252] F=\left[\begin{array}{rr}-2 & -1 \\ 5 & 2 \\ 5 & -2\end{array}\right] \newlineLet H=EF \mathrm{H}=\mathrm{EF} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Understand matrix multiplication rules: Understand matrix multiplication rules.\newlineTo multiply two matrices, the number of columns in the first matrix must equal the number of rows in the second matrix. Matrix EE is a 2×32 \times 3 matrix and matrix FF is a 3×23 \times 2 matrix, so they can be multiplied to result in a 2×22 \times 2 matrix HH.
  2. Set up matrix multiplication: Set up the multiplication of matrices EE and FF. We will calculate the elements of matrix HH by taking the dot product of the rows of EE with the columns of FF.
  3. Calculate H[1,1]H[1,1]: Calculate the element H[1,1]H[1,1].
    H[1,1]=(1×2)+(1×5)+(5×5)H[1,1] = (1 \times -2) + (-1 \times 5) + (5 \times 5)
    H[1,1]=25+25H[1,1] = -2 - 5 + 25
    H[1,1]=18H[1,1] = 18
  4. Calculate H[1,2]H[1,2]: Calculate the element H[1,2]H[1,2].H[1,2]=(1×1)+(1×2)+(5×2)H[1,2] = (1 \times -1) + (-1 \times 2) + (5 \times -2)H[1,2]=1210H[1,2] = -1 - 2 - 10H[1,2]=13H[1,2] = -13
  5. Calculate H[2,1]H[2,1]: Calculate the element H[2,1]H[2,1].
    H[2,1]=(5×2)+(5×5)+(0×5)H[2,1] = (5 \times -2) + (5 \times 5) + (0 \times 5)
    H[2,1]=10+25+0H[2,1] = -10 + 25 + 0
    H[2,1]=15H[2,1] = 15
  6. Calculate H[2,2)H[2,2): Calculate the element H[2,2]H[2,2].H[2,2]=(5×1)+(5×2)+(0×2)H[2,2] = (5 \times -1) + (5 \times 2) + (0 \times -2)H[2,2]=5+10+0H[2,2] = -5 + 10 + 0H[2,2]=5H[2,2] = 5

More problems from Write and solve direct variation equations