Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

C=[[-1],[-2],[2]]" and "D=[[2,1]]
Let 
H=CD. Find 
H.

H=

C=[122] and D=[2amp;1] \mathrm{C}=\left[\begin{array}{r} -1 \\ -2 \\ 2 \end{array}\right] \text { and } \mathrm{D}=\left[\begin{array}{ll} 2 & 1 \end{array}\right] \newlineLet H=CD \mathrm{H}=\mathrm{CD} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. C=[122] and D=[21] \mathrm{C}=\left[\begin{array}{r} -1 \\ -2 \\ 2 \end{array}\right] \text { and } \mathrm{D}=\left[\begin{array}{ll} 2 & 1 \end{array}\right] \newlineLet H=CD \mathrm{H}=\mathrm{CD} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Define Matrices C and D: Define the matrices C and D.\newlineMatrix C is a 3×13 \times 1 matrix, and matrix D is a 1×21 \times 2 matrix.\newlineC=[1 2 2]C = \begin{bmatrix} -1 \ -2 \ 2 \end{bmatrix}\newlineD=[2amp;1]D = \begin{bmatrix} 2 & 1 \end{bmatrix}
  2. Check Matrix Multiplication: Determine if matrix multiplication is possible.\newlineFor matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. Matrix CC has 11 column, and matrix DD has 11 row, so multiplication is possible.
  3. Multiply CC by DD: Multiply matrix CC by matrix DD. To multiply CC by DD, we take each element of CC and multiply it by each element of DD, then sum the products for each row of CC to get the corresponding row in matrix HH. DD00
  4. Calculate Each Element: Perform the calculations for each element.\newlineCalculate each element of matrix HH.\newlineH = \left[\begin{array}{cc}\(\newline-2 & -1 (\newline\)-4 & -2 (\newline\)4 & 2\newline\end{array}\right]\)
  5. Write Final Matrix HH: Write the final matrix HH. The resulting matrix HH after the multiplication is: H=[[2,1],[4,2],[4,2]]H = [[-2, -1], [-4, -2], [4, 2]]

More problems from Write and solve direct variation equations