Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Does the function model exponential growth or decay?

f(t)=5*((3)/(7))^(t)
Choose 1 answer:
(A) Growth
(B) Decay

Does the function model exponential growth or decay?\newlinef(t)=5(37)t f(t)=5 \cdot\left(\frac{3}{7}\right)^{t} \newlineChoose 11 answer:\newline(A) Growth\newline(B) Decay

Full solution

Q. Does the function model exponential growth or decay?\newlinef(t)=5(37)t f(t)=5 \cdot\left(\frac{3}{7}\right)^{t} \newlineChoose 11 answer:\newline(A) Growth\newline(B) Decay
  1. Identify base: Step 11: Identify the base of the exponential function. In the function f(t)=5(37)tf(t)=5\left(\frac{3}{7}\right)^t, the base is 37\frac{3}{7}.
  2. Determine growth/decay: Step 22: Determine if the base is greater than 11 or less than 11. A base greater than 11 indicates exponential growth, while a base less than 11 indicates exponential decay.
  3. Base analysis: Step 33: Since (37)(\frac{3}{7}) is less than 11, the function represents exponential decay.
  4. Choose function: Step 44: Choose the correct answer based on the analysis. The function f(t)=5×(37)tf(t)=5\times\left(\frac{3}{7}\right)^t models exponential decay.

More problems from Interpret the exponential function word problem