Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Divide the following complex numbers.

(6-7i)/(4+i)

Divide the following complex numbers.\newline67i4+i \frac{6-7 i}{4+i}

Full solution

Q. Divide the following complex numbers.\newline67i4+i \frac{6-7 i}{4+i}
  1. Multiply Conjugate: Multiply the numerator and denominator by the conjugate of the denominator.\newlineTo divide complex numbers, we multiply the numerator and the denominator by the conjugate of the denominator to remove the imaginary part from the denominator. The conjugate of (4+i)(4+i) is (4i)(4-i).\newline67i4+i4i4i\frac{6-7i}{4+i} \cdot \frac{4-i}{4-i}
  2. Distribute Numerator: Apply the distributive property (foil method) to the numerator.\newlineMultiply (67i)(6-7i) by (4i)(4-i).\newline(6×4)+(6×(i))+(7i×4)+(7i×(i))(6\times 4) + (6\times (-i)) + (-7i\times 4) + (-7i\times (-i))\newline246i28i+7i224 - 6i - 28i + 7i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1.\newline246i28i724 - 6i - 28i - 7\newlineCombine like terms.\newline(247)+(6i28i)(24 - 7) + (-6i - 28i)\newline1734i17 - 34i
  3. Distribute Denominator: Apply the distributive property to the denominator.\newlineMultiply (4+i)(4+i) by (4i)(4-i).\newline(44)+(4(i))+(i4)+(i(i))(4\cdot 4) + (4\cdot (-i)) + (i\cdot 4) + (i\cdot (-i))\newline164i+4ii216 - 4i + 4i - i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1 and combine like terms.\newline16(1)16 - (-1)\newline16+116 + 1\newline1717
  4. Write Division Result: Write the result of the division.\newlineNow that we have simplified both the numerator and the denominator, we can write the result of the division.\newline(1734i)/17(17 - 34i) / 17
  5. Divide Real and Imaginary: Divide both the real and imaginary parts by the denominator.\newlineDivide 1717 and 34i-34i by 1717 separately.\newline1717(34i17)\frac{17}{17} - \left(\frac{34i}{17}\right)\newline12i1 - 2i

More problems from Simplify radical expressions involving fractions