Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[-4,-8],[-5,-5]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[4amp;85amp;5] \left[\begin{array}{cc} -4 & -8 \\ -5 & -5 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[4855] \left[\begin{array}{cc} -4 & -8 \\ -5 & -5 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Calculate Determinant: To find the inverse of a 22x22 matrix, we use the formula:\newlineInverse(A) = (1/det(A))adj(A)(1/\text{det}(A)) \cdot \text{adj}(A)\newlinewhere det(A)\text{det}(A) is the determinant of matrix A and adj(A)\text{adj}(A) is the adjugate of matrix A.\newlineFirst, we need to calculate the determinant of the matrix.\newlinedet(A)=(4)(5)(8)(5)\text{det}(A) = (-4)(-5) - (-8)(-5)\newlinedet(A)=2040\text{det}(A) = 20 - 40\newlinedet(A)=20\text{det}(A) = -20
  2. Find Adjugate: Since the determinant is not zero, the matrix has an inverse. Now we need to find the adjugate of the matrix.\newlineThe adjugate of a 2×22 \times 2 matrix is obtained by swapping the elements on the main diagonal and changing the signs of the off-diagonal elements.\newlineSo, the adjugate of matrix AA is:\newlineadj(A)=[5amp;8 5amp;4]\text{adj}(A) = \left[\begin{array}{cc}-5 & 8 \ 5 & -4\end{array}\right]
  3. Calculate Inverse: Now we can find the inverse of the matrix by multiplying the adjugate by 1/det(A)1/\det(A). \newlineInverse(AA) = (1/20)×[5amp;8 5amp;4](1/-20) \times \left[\begin{array}{cc} -5 & 8 \ 5 & -4 \end{array}\right] \newlineInverse(AA) = [5/20amp;8/20 5/20amp;4/20]\left[\begin{array}{cc} -5/-20 & 8/-20 \ 5/-20 & -4/-20 \end{array}\right] \newlineInverse(AA) = [1/4amp;2/5 1/4amp;1/5]\left[\begin{array}{cc} 1/4 & -2/5 \ -1/4 & 1/5 \end{array}\right]

More problems from Powers of i