Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[-3,6],[2,-5]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[3amp;62amp;5] \left[\begin{array}{cc} -3 & 6 \\ 2 & -5 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[3625] \left[\begin{array}{cc} -3 & 6 \\ 2 & -5 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Write Matrix Elements: Write down the matrix and its elements.\newlineMatrix A=[3amp;6 2amp;5]A = \begin{bmatrix} -3 & 6 \ 2 & -5 \end{bmatrix}\newlineLet's denote the elements of the matrix as follows:\newlinea=3a = -3, b=6b = 6, c=2c = 2, d=5d = -5
  2. Calculate Determinant: Calculate the determinant of the matrix.\newlineThe determinant of a 22x22 matrix AA is given by adbcad - bc.\newlinedet(A)=(3)(5)(6)(2)\text{det}(A) = (-3)(-5) - (6)(2)\newlinedet(A)=1512\text{det}(A) = 15 - 12\newlinedet(A)=3\text{det}(A) = 3
  3. Check Non-Zero Determinant: Check if the determinant is non-zero.\newlineSince det(A)=3\text{det}(A) = 3, which is non-zero, the matrix has an inverse.
  4. Inverse Formula: Write down the formula for the inverse of a 2×22 \times 2 matrix.\newlineThe inverse of a 2×22 \times 2 matrix AA is (1/det(A))×[damp;b camp;a](1/\text{det}(A)) \times \left[\begin{array}{cc} d & -b \ -c & a \end{array}\right]
  5. Calculate Inverse: Plug the values into the formula to calculate the inverse.\newlineInverse of A=13×[5amp;6 2amp;3]A = \frac{1}{3} \times \begin{bmatrix} -5 & -6 \ -2 & -3 \end{bmatrix}
  6. Simplify Inverse: Simplify the matrix by multiplying each element by the scalar 13\frac{1}{3}.\newlineInverse of A=[53amp;63 23amp;33]A = \left[\begin{array}{cc} -\frac{5}{3} & -\frac{6}{3} \ -\frac{2}{3} & -\frac{3}{3} \end{array}\right]\newlineInverse of A=[53amp;2 23amp;1]A = \left[\begin{array}{cc} -\frac{5}{3} & -2 \ -\frac{2}{3} & -1 \end{array}\right]

More problems from Powers of i