Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[2,-8],[-2,7]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[2amp;82amp;7] \left[\begin{array}{cc} 2 & -8 \\ -2 & 7 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[2827] \left[\begin{array}{cc} 2 & -8 \\ -2 & 7 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Write Matrix Determinant: Write down the matrix and its determinant.\newlineThe matrix is:\newlineA=[2amp;8 2amp;7]A = \left[\begin{array}{cc}2 & -8 \ -2 & 7\end{array}\right]\newlineTo find the inverse of a 2×22 \times 2 matrix, we need to calculate its determinant. The determinant of a 2×22 \times 2 matrix A=[aamp;b camp;d]A = \left[\begin{array}{cc}a & b \ c & d\end{array}\right] is adbcad - bc.\newlineFor our matrix AA, the determinant (det(A)\text{det}(A)) is:\newlinedet(A)=(2)(7)(8)(2)\text{det}(A) = (2)(7) - (-8)(-2)\newlinedet(A)=1416\text{det}(A) = 14 - 16\newlinedet(A)=2\text{det}(A) = -2
  2. Check Non-Zero Determinant: Check if the determinant is non-zero.\newlineSince the determinant is non-zero (det(A)=2\text{det}(A) = -2), the matrix has an inverse. If the determinant were zero, the matrix would not have an inverse.
  3. Find Matrix of Minors: Find the matrix of minors.\newlineFor a 2×22 \times 2 matrix, the matrix of minors is simply a matrix where each element is replaced by the determinant of the submatrix formed by removing the row and column of that element.\newlineFor our matrix AA, the matrix of minors is:\newline\left[\begin{array}{cc}\(\newline7 & -2 (\newline\)-8 & 2\newline\end{array}\right]\)
  4. Apply Checkerboard of Signs: Apply the checkerboard of signs to the matrix of minors to get the cofactor matrix.\newlineFor a 2×22\times2 matrix, this means we change the sign of the elements at position (1,2)(1,2) and (2,1)(2,1).\newlineThe cofactor matrix is:\newline\left[\begin{array}{cc}\(\newline7 & 2 (\newline\)8 & 2\newline\end{array}\right]\)
  5. Transpose Cofactor Matrix: Transpose the cofactor matrix.\newlineThe transpose of a matrix is obtained by swapping the rows and columns.\newlineThe transpose of the cofactor matrix is:\newline[7amp;8 2amp;2]\begin{bmatrix}7 & 8\ 2 & 2\end{bmatrix}
  6. Multiply by 1/det(A)1/\text{det}(A): Multiply the transpose of the cofactor matrix by 1/det(A)1/\text{det}(A). Since det(A)=2\text{det}(A) = -2, we multiply each element of the transposed cofactor matrix by 1/2-1/2 to get the inverse of the original matrix.\newlineThe inverse matrix is:\newline\left[\begin{array}{cc}\(\newline-7/2 & -8/2 (\newline\)-2/2 & -2/2\newline\end{array}\right]\)
  7. Simplify Inverse Matrix: Simplify the fractions in the inverse matrix.\newlineThe simplified inverse matrix is:\newline\left[\begin{array}{cc}\(\newline-3.5 & -4 (\newline\)-1 & -1\newline\end{array}\right]\)

More problems from Powers of i