Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix:

[[-10,1],[2,-1]]
Find the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Consider this matrix:\newline[10amp;12amp;1] \left[\begin{array}{cc} -10 & 1 \\ 2 & -1 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.

Full solution

Q. Consider this matrix:\newline[10121] \left[\begin{array}{cc} -10 & 1 \\ 2 & -1 \end{array}\right] \newlineFind the inverse of the matrix. Give exact values. Non-integers can be given as decimals or as simplified fractions.
  1. Write Matrix Determinant: Write down the matrix and its determinant.\newlineThe determinant of a 2×22 \times 2 matrix [aamp;b camp;d]\left[\begin{array}{cc}a & b \ c & d\end{array}\right] is adbcad - bc.\newlineFor the matrix [10amp;1 2amp;1]\left[\begin{array}{cc}-10 & 1 \ 2 & -1\end{array}\right], the determinant is (10)(1)(1)(2)(-10)(-1) - (1)(2).
  2. Calculate Determinant: Calculate the determinant.\newlineDeterminant = (10)(1)(1)(2)=102=8(-10)(-1) - (1)(2) = 10 - 2 = 8.
  3. Find Inverse Matrix: Find the inverse of the matrix.\newlineThe inverse of a 2×22 \times 2 matrix [aamp;b camp;d]\left[\begin{array}{cc} a & b \ c & d \end{array}\right] is 1determinant×[damp;b camp;a]\frac{1}{\text{determinant}} \times \left[\begin{array}{cc} d & -b \ -c & a \end{array}\right].\newlineFor our matrix, the inverse will be 18×[1amp;1 2amp;10]\frac{1}{8} \times \left[\begin{array}{cc} -1 & -1 \ -2 & -10 \end{array}\right].
  4. Multiply by Reciprocal: Multiply the matrix by the reciprocal of the determinant.\newlineInverse matrix = (18)×[1amp;1 2amp;10]=[18amp;18 28amp;108](\frac{1}{8}) \times \left[\begin{array}{cc} -1 & -1 \ -2 & -10 \end{array}\right] = \left[\begin{array}{cc} -\frac{1}{8} & -\frac{1}{8} \ -\frac{2}{8} & -\frac{10}{8} \end{array}\right].
  5. Simplify Fractions: Simplify the fractions in the inverse matrix.\newlineInverse matrix = \left[\begin{array}{cc}\(\newline-\frac{1}{8} & -\frac{1}{8} (\newline\)-\frac{1}{4} & -\frac{5}{4}\newline\end{array}\right]\).

More problems from Powers of i