Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider the following problem:
The air gap (the distance from the bottom of the bridge to the surface of the water) under a bridge is changing at a rate of 
r(t)=0.6 sin((pi t)/(6)) meters per hour (where 
t is the time in hours). At time 
t=13, the air gap is 62 meters. What is the air gap when 
t=15 hours?
Which expression can we use to solve the problem?
Choose 1 answer:
(A) 
62+int_(13)^(15)r^(')(t)dt
(B) 
r^(')(15)
(C) 
r^(')(13)+62
(D) 
62+int_(13)^(15)r(t)dt

Consider the following problem:\newlineThe air gap (the distance from the bottom of the bridge to the surface of the water) under a bridge is changing at a rate of r(t)=0.6sin(πt6) r(t)=0.6 \sin \left(\frac{\pi t}{6}\right) meters per hour (where t t is the time in hours). At time t=13 t=13 , the air gap is 6262 meters. What is the air gap when t=15 t=15 hours?\newlineWhich expression can we use to solve the problem?\newlineChoose 11 answer:\newline(A) 62+1315r(t)dt 62+\int_{13}^{15} r^{\prime}(t) d t \newline(B) r(15) r^{\prime}(15) \newline(C) r(13)+62 r^{\prime}(13)+62 \newline(D) 62+1315r(t)dt 62+\int_{13}^{15} r(t) d t

Full solution

Q. Consider the following problem:\newlineThe air gap (the distance from the bottom of the bridge to the surface of the water) under a bridge is changing at a rate of r(t)=0.6sin(πt6) r(t)=0.6 \sin \left(\frac{\pi t}{6}\right) meters per hour (where t t is the time in hours). At time t=13 t=13 , the air gap is 6262 meters. What is the air gap when t=15 t=15 hours?\newlineWhich expression can we use to solve the problem?\newlineChoose 11 answer:\newline(A) 62+1315r(t)dt 62+\int_{13}^{15} r^{\prime}(t) d t \newline(B) r(15) r^{\prime}(15) \newline(C) r(13)+62 r^{\prime}(13)+62 \newline(D) 62+1315r(t)dt 62+\int_{13}^{15} r(t) d t
  1. Understand and Determine Approach: Understand the problem and determine the correct approach.\newlineWe are given the rate of change of the air gap as a function of time, r(t)r(t), and the air gap at a specific time, t=13t=13 hours. To find the air gap at t=15t=15 hours, we need to integrate the rate of change from t=13t=13 to t=15t=15 and add it to the air gap at t=13t=13.
  2. Identify Correct Expression: Identify the correct expression to use.\newlineThe correct expression to use is the one that adds the integral of the rate of change from t=13t=13 to t=15t=15 to the air gap at t=13t=13. This is because the integral of a rate of change gives us the total change over the interval. The correct expression is therefore:\newline62+1315r(t)dt62 + \int_{13}^{15} r(t) \, dt\newlineThis corresponds to option (D).
  3. Calculate Integral from t=13t=13 to t=15t=15: Calculate the integral of the rate of change from t=13t=13 to t=15t=15. We need to integrate r(t)=0.6sin(πt6)r(t) = 0.6 \sin\left(\frac{\pi t}{6}\right) from t=13t=13 to t=15t=15. 13150.6sin(πt6)dt\int_{13}^{15} 0.6 \sin\left(\frac{\pi t}{6}\right) dt
  4. Perform Integration with Substitution: Perform the integration.\newlineTo integrate 0.6sin(πt6)0.6 \sin\left(\frac{\pi t}{6}\right), we use the substitution method. Let u=πt6u = \frac{\pi t}{6}, then du=π6dtdu = \frac{\pi}{6} dt, and dt=6πdudt = \frac{6}{\pi} du. The limits of integration also change accordingly: when t=13t=13, u=π136u=\frac{\pi\cdot 13}{6}; when t=15t=15, u=π156u=\frac{\pi\cdot 15}{6}.\newline0.6sin(u)6πdu\int 0.6 \sin(u) \cdot \frac{6}{\pi} du
  5. Evaluate Integral at New Limits: Calculate the new integral with the substitution.\newlineThe integral becomes:\newline(0.6×6π)sin(u)du(0.6 \times \frac{6}{\pi}) \int \sin(u) \, du from u=π×136u=\frac{\pi\times13}{6} to u=π×156u=\frac{\pi\times15}{6}\newlineThis simplifies to:\newline(3.6π)×[cos(u)](\frac{3.6}{\pi}) \times [-\cos(u)] from u=π×136u=\frac{\pi\times13}{6} to u=π×156u=\frac{\pi\times15}{6}
  6. Simplify Expression: Evaluate the integral at the new limits.\newlineWe substitute the limits into the antiderivative:\newline(3.6π)[cos(π156)+cos(π136)](\frac{3.6}{\pi}) * [-\cos(\frac{\pi*15}{6}) + \cos(\frac{\pi*13}{6})]
  7. Calculate Cosine Value: Simplify the expression.\newlineWe calculate the cosine values and multiply by the constant:\newline(3.6/π)×[cos((5π)/2)+cos((13π)/6)](3.6/\pi) \times [-\cos((5\pi)/2) + \cos((13\pi)/6)]\newlineNote that cos((5π)/2)=0\cos((5\pi)/2) = 0 and cos((13π)/6)\cos((13\pi)/6) is a value we need to calculate.
  8. Complete Calculation: Calculate the cosine value and complete the calculation.\newlinecos(13π6)\cos\left(\frac{13\pi}{6}\right) is equivalent to cos(π6)\cos\left(\frac{\pi}{6}\right) because cosine is periodic with period 2π2\pi. Therefore, cos(13π6)=cos(π6)=3/2\cos\left(\frac{13\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \sqrt{3}/2.\newlineNow we can complete the calculation:\newline3.6π×[0+3/2]\frac{3.6}{\pi} \times [0 + \sqrt{3}/2]\newlineThis simplifies to:\newline3.6π×(3/2)\frac{3.6}{\pi} \times (\sqrt{3}/2)
  9. Calculate Numerical Value: Calculate the numerical value of the integral. \newline(3.6/π)×(3/2)(3.6/π)×(0.866)(3.6/\pi) \times (\sqrt{3}/2) \approx (3.6/\pi) \times (0.866)\newline0.9956\approx 0.9956
  10. Add Result to Air Gap: Add the result of the integral to the air gap at t=13t=13 to find the air gap at t=15t=15. \newline62+0.995662.995662 + 0.9956 \approx 62.9956 meters

More problems from Find derivatives of sine and cosine functions