Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Remove all perfect squares from inside the square roots. Assume 
y and 
z are positive.

sqrt(75 yz^(2))=

Simplify.\newlineRemove all perfect squares from inside the square roots. Assume \newlineyy and \newlinezz are positive.\newline75yz2\sqrt{75 yz^{2}}=

Full solution

Q. Simplify.\newlineRemove all perfect squares from inside the square roots. Assume \newlineyy and \newlinezz are positive.\newline75yz2\sqrt{75 yz^{2}}=
  1. Factor out perfect squares: Identify and factor out the perfect squares from inside the square root. 75yz2\sqrt{75 yz^{2}} can be broken down into 25×3×y×z2\sqrt{25 \times 3 \times y \times z^2}. Since 2525 and z2z^2 are perfect squares, we can take them out of the square root.
  2. Simplify square root: Simplify the square root by taking out the perfect squares. 25×3×y×z2=25×3×y×z2\sqrt{25 \times 3 \times y \times z^2} = \sqrt{25} \times \sqrt{3} \times \sqrt{y} \times \sqrt{z^2} = 5×3×y×z5 \times \sqrt{3} \times \sqrt{y} \times z
  3. Combine terms for final form: Combine the terms outside the square root to get the final simplified form.\newline53yz=5z3y5 \cdot \sqrt{3} \cdot \sqrt{y} \cdot z = 5z \cdot \sqrt{3y}

More problems from Simplify radical expressions with variables