Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Remove all perfect squares from inside the square roots. Assume 
a and 
b are positive.

sqrt(42a^(4)b^(6))=

Simplify.\newlineRemove all perfect squares from inside the square roots. Assume \newlineaa and \newlinebb are positive.\newline42a4b6\sqrt{42a^{4}b^{6}}=

Full solution

Q. Simplify.\newlineRemove all perfect squares from inside the square roots. Assume \newlineaa and \newlinebb are positive.\newline42a4b6\sqrt{42a^{4}b^{6}}=
  1. Identify Perfect Squares: To simplify 42a4b6\sqrt{42a^{4}b^{6}}, we need to identify and take out the perfect squares from under the square root.42a4b6=2×3×7×a4×b6\sqrt{42a^{4}b^{6}} = \sqrt{2 \times 3 \times 7 \times a^{4} \times b^{6}}We can see that a4a^{4} and b6b^{6} are perfect squares because a4=(a2)2a^{4} = (a^{2})^{2} and b6=(b3)2b^{6} = (b^{3})^{2}.
  2. Take Square Roots: Now we take the square root of the perfect squares a4a^{4} and b6b^{6}. \newlinea4=a2\sqrt{a^{4}} = a^2 and b6=b3\sqrt{b^{6}} = b^3.\newlineSo, we can rewrite the expression as:\newline42a4b6=2×3×7×a4×b6=42×a2×b3.\sqrt{42a^{4}b^{6}} = \sqrt{2 \times 3 \times 7} \times \sqrt{a^{4}} \times \sqrt{b^{6}} = \sqrt{42} \times a^2 \times b^3.
  3. Final Simplification: Since 4242 does not have any perfect square factors other than 11, we cannot simplify 42\sqrt{42} any further.\newlineTherefore, the simplified form of the original expression is:\newline42a4b6=42×a2×b3.\sqrt{42a^{4}b^{6}} = \sqrt{42} \times a^{2} \times b^{3}.

More problems from Simplify radical expressions with variables