Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
x is positive.

sqrt(3x^(4))*sqrt(5x^(2))*sqrt10=

Simplify. \newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlinexx is positive.\newline3x45x210\sqrt{3x^{4}}\cdot\sqrt{5x^{2}}\cdot\sqrt{10}

Full solution

Q. Simplify. \newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlinexx is positive.\newline3x45x210\sqrt{3x^{4}}\cdot\sqrt{5x^{2}}\cdot\sqrt{10}
  1. Multiply square roots: We start by multiplying the square roots together, using the property that a×b=a×b\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}.\newline3x4×5x2×10=3x4×5x2×10\sqrt{3x^{4}}\times\sqrt{5x^{2}}\times\sqrt{10} = \sqrt{3x^{4} \times 5x^{2} \times 10}
  2. Combine terms under square root: Next, we combine the terms under the single square root. 3x45x210=15x610=150x6\sqrt{3x^{4} \cdot 5x^{2} \cdot 10} = \sqrt{15x^{6} \cdot 10} = \sqrt{150x^{6}}
  3. Identify perfect squares: Now we look for perfect squares within the square root. We can see that 150150 can be factored into 2×3×522 \times 3 \times 5^2, and x6x^{6} is a perfect square since 66 is an even exponent.\newline150x6=2×3×52×x6\sqrt{150x^{6}} = \sqrt{2 \times 3 \times 5^2 \times x^{6}}
  4. Take out perfect squares: We can now take out the perfect squares from under the square root. 2352x6=5x323\sqrt{2 \cdot 3 \cdot 5^2 \cdot x^{6}} = 5 \cdot x^{3} \cdot \sqrt{2 \cdot 3}
  5. Simplify expression: Finally, we simplify the expression under the square root. 2×3=6\sqrt{2 \times 3} = \sqrt{6} So, the final simplified expression is 5×x3×65 \times x^{3} \times \sqrt{6}.

More problems from Simplify radical expressions with variables