Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
a is positive.

3sqrt(5a)*8sqrt(35a^(2))=

Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineaa is positive.\newline35a×835a2=3\sqrt{5a} \times 8\sqrt{35a^{2}}=

Full solution

Q. Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineaa is positive.\newline35a×835a2=3\sqrt{5a} \times 8\sqrt{35a^{2}}=
  1. Multiply coefficients: Multiply the coefficients (numbers outside the square roots) together.\newline3×8=243 \times 8 = 24
  2. Multiply radicands: Multiply the radicands (numbers inside the square roots) together. 5a×35a2=5a×35a2\sqrt{5a} \times \sqrt{35a^2} = \sqrt{5a \times 35a^2}
  3. Simplify expression inside square root: Simplify the expression inside the square root. 5a×35a2=175a35a \times 35a^2 = 175a^3
  4. Factor expression inside square root: Factor the expression inside the square root to identify perfect squares.\newline175a3=5×5×7×a×a×a=(52)×7×(a2)×a175a^3 = 5 \times 5 \times 7 \times a \times a \times a = (5^2) \times 7 \times (a^2) \times a
  5. Take square root of perfect squares: Take the square root of the perfect squares. (52)7(a2)a=5a7a\sqrt{(5^2) \cdot 7 \cdot (a^2) \cdot a} = 5a \cdot \sqrt{7a}
  6. Multiply result by coefficient: Multiply the result from Step 55 by the coefficient from Step 11.\newline24×(5a×7a)=120a×7a24 \times (5a \times \sqrt{7a}) = 120a \times \sqrt{7a}

More problems from Simplify radical expressions with variables