Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
y is positive.

6sqrt(15y^(4))*2sqrt(20y^(2))=

Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineyy is positive.\newline615y4×220y2=6\sqrt{15y^{4}}\times2\sqrt{20y^{2}}=

Full solution

Q. Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineyy is positive.\newline615y4×220y2=6\sqrt{15y^{4}}\times2\sqrt{20y^{2}}=
  1. Write expression: Write down the expression to be simplified.\newlineWe have the expression 615y4220y26\sqrt{15y^{4}} \cdot 2\sqrt{20y^{2}}.
  2. Multiply coefficients: Multiply the coefficients (numbers outside the square roots) together. 6×2=126 \times 2 = 12
  3. Multiply radicands: Multiply the radicands (numbers inside the square roots) together. 15y4×20y2=15×20×y4×y2\sqrt{15y^{4}} \times \sqrt{20y^{2}} = \sqrt{15 \times 20 \times y^{4} \times y^{2}}
  4. Simplify multiplication: Simplify the multiplication inside the square root.\newline15×20=30015 \times 20 = 300\newliney4×y2=y4+2=y6y^{4} \times y^{2} = y^{4+2} = y^{6}\newlineSo, 15×20×y4×y2=300y6\sqrt{15 \times 20 \times y^{4} \times y^{2}} = \sqrt{300y^{6}}
  5. Factor out perfect squares: Factor out perfect squares from the radicand. \newline300=2×2×3×5×5=22×3×52300 = 2 \times 2 \times 3 \times 5 \times 5 = 2^2 \times 3 \times 5^2\newliney(6)=(y(3))2y^{(6)} = (y^{(3)})^2\newlineSo, 300y(6)=22×3×52×(y(3))2\sqrt{300y^{(6)}} = \sqrt{2^2 \times 3 \times 5^2 \times (y^{(3)})^2}
  6. Take square root: Take the square root of the perfect squares. 22352(y3)2=25y33\sqrt{2^2 \cdot 3 \cdot 5^2 \cdot (y^{3})^2} = 2 \cdot 5 \cdot y^{3} \cdot \sqrt{3} = 10y3310y^{3} \cdot \sqrt{3}
  7. Multiply with coefficient: Multiply the result from Step 66 with the coefficient from Step 22.\newline12×(10y3×3)=120y3×312 \times (10y^{3} \times \sqrt{3}) = 120y^{3} \times \sqrt{3}

More problems from Simplify radical expressions with variables