Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
b is positive.

sqrt(24b^(3))*sqrt(40b^(2))*sqrt(b^(2))=

Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume bb is positive.\newline24b340b2b2=\sqrt{24b^{3}}\cdot\sqrt{40b^{2}}\cdot\sqrt{b^{2}}=

Full solution

Q. Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume bb is positive.\newline24b340b2b2=\sqrt{24b^{3}}\cdot\sqrt{40b^{2}}\cdot\sqrt{b^{2}}=
  1. Prime Factorization of Square Roots: First, let's find the prime factorization of the numbers inside the square roots and express the variables with exponents that show the perfect squares.\newline24b3=2223bbb\sqrt{24b^{3}} = \sqrt{2 \cdot 2 \cdot 2 \cdot 3 \cdot b \cdot b \cdot b}\newline40b2=2225bb\sqrt{40b^{2}} = \sqrt{2 \cdot 2 \cdot 2 \cdot 5 \cdot b \cdot b}\newlineb2=bb\sqrt{b^{2}} = \sqrt{b \cdot b}
  2. Combining Square Roots: Now, let's combine all the square roots into one square root since the product of square roots is the square root of the product of the numbers.\newline24b3×40b2×b2=24b3×40b2×b2\sqrt{24b^{3}} \times \sqrt{40b^{2}} \times \sqrt{b^{2}} = \sqrt{24b^{3} \times 40b^{2} \times b^{2}}
  3. Multiplying Inside the Square Root: Next, multiply the numbers and the variables inside the square root.\newline24b340b2b2=(2223)(2225)(bbb)(bb)(bb)\sqrt{24b^{3} \cdot 40b^{2} \cdot b^{2}} = \sqrt{(2 \cdot 2 \cdot 2 \cdot 3) \cdot (2 \cdot 2 \cdot 2 \cdot 5) \cdot (b \cdot b \cdot b) \cdot (b \cdot b) \cdot (b \cdot b)}\newline=222222235bbbbbbb= \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5 \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b \cdot b}\newline=2735b7= \sqrt{2^{7} \cdot 3 \cdot 5 \cdot b^{7}}
  4. Removing Perfect Squares: Now, we can remove the perfect squares from inside the square root. 262^6 is a perfect square, and b6b^6 is a perfect square.\newline2735b7=26235b6b\sqrt{2^7 \cdot 3 \cdot 5 \cdot b^7} = \sqrt{2^6 \cdot 2 \cdot 3 \cdot 5 \cdot b^6 \cdot b}\newline=26235b6b= \sqrt{2^6} \cdot \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{5} \cdot \sqrt{b^6} \cdot \sqrt{b}\newline=23235b3b= 2^3 \cdot \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{5} \cdot b^3 \cdot \sqrt{b}\newline=8235b= 8 \cdot \sqrt{2 \cdot 3 \cdot 5 \cdot b}\newline=830b= 8 \cdot \sqrt{30b}

More problems from Simplify radical expressions with variables