Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
a is positive.

sqrt(2a)*sqrt(14a^(3))*sqrt(5a)=

Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineaa is positive.\newline2a14a35a=\sqrt{2a}\cdot\sqrt{14a^{3}}\cdot\sqrt{5a}=

Full solution

Q. Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlineaa is positive.\newline2a14a35a=\sqrt{2a}\cdot\sqrt{14a^{3}}\cdot\sqrt{5a}=
  1. Multiply square roots: First, we need to multiply the square roots together. 2a×14a3×5a=2a×14a3×5a\sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} = \sqrt{2a \times 14a^3 \times 5a}
  2. Simplify expression under square root: Now, we simplify the expression under the square root by multiplying the numbers and combining the 'a' terms.\newline2a×14a3×5a=2×14×5×a×a3×a2a \times 14a^3 \times 5a = 2 \times 14 \times 5 \times a \times a^3 \times a\newline=140×a5= 140 \times a^5
  3. Rewrite expression to identify perfect squares: Next, we rewrite the expression under the square root in a way that will help us identify perfect squares.\newline140a5=435a4a\sqrt{140 \cdot a^5} = \sqrt{4 \cdot 35 \cdot a^4 \cdot a}
  4. Take square root of perfect squares out: We can now take the square root of the perfect squares 44 and a4a^4 out of the square root.\newline4×35×a4×a=4×a4×35a\sqrt{4 \times 35 \times a^4 \times a} = \sqrt{4} \times \sqrt{a^4} \times \sqrt{35a}\newline=2×a2×35a= 2 \times a^2 \times \sqrt{35a}
  5. Final simplified answer: Finally, we have simplified the expression by removing all perfect squares from inside the square roots.\newlineThe final answer is 2a235a2a^2 \cdot \sqrt{35a}.

More problems from Simplify radical expressions with variables