Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
Multiply and remove all perfect squares from inside the square roots. Assume 
z is positive.

5sqrt(14z^(2))*4sqrt(21z^(3))=

Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlinez z is positive.\newline514z2421z3= 5\sqrt{14z^{2}} \cdot 4\sqrt{21z^{3}} =

Full solution

Q. Simplify.\newlineMultiply and remove all perfect squares from inside the square roots. Assume \newlinez z is positive.\newline514z2421z3= 5\sqrt{14z^{2}} \cdot 4\sqrt{21z^{3}} =
  1. Write expression: Write down the expression to be simplified.\newlineWe have the expression 514z2421z35\sqrt{14z^{2}} \cdot 4\sqrt{21z^{3}}.
  2. Multiply coefficients: Multiply the coefficients (numbers outside the square roots) together. 5×4=205 \times 4 = 20
  3. Multiply radicands: Multiply the radicands (expressions inside the square roots) together. 14z2×21z3=14×21×z2×z3\sqrt{14z^{2}} \times \sqrt{21z^{3}} = \sqrt{14 \times 21 \times z^{2} \times z^{3}}
  4. Simplify multiplication: Simplify the multiplication inside the square root. \newline14×21=29414 \times 21 = 294\newlinez2×z3=z2+3=z5z^{2} \times z^{3} = z^{2+3} = z^{5}\newlineSo, 14×21×z2×z3=294×z5\sqrt{14 \times 21 \times z^{2} \times z^{3}} = \sqrt{294 \times z^{5}}
  5. Factor out perfect squares: Factor out perfect squares from the radicand. \newline294294 can be factored into 2×3×7×72 \times 3 \times 7 \times 7, and z5z^{5} can be written as z4×zz^{4} \times z.\newlineSo, 294×z5=2×3×7×7×z4×z\sqrt{294 \times z^{5}} = \sqrt{2 \times 3 \times 7 \times 7 \times z^{4} \times z}
  6. Take out perfect squares: Take out the perfect squares from under the square root. 7×77 \times 7 is a perfect square, and z4z^{4} is a perfect square. So, 2×3×7×7×z4×z=7z2×2×3×z\sqrt{2 \times 3 \times 7 \times 7 \times z^{4} \times z} = 7z^{2} \times \sqrt{2 \times 3 \times z}
  7. Simplify expression: Simplify the expression inside the square root. 2×3=62 \times 3 = 6 So, 7z2×2×3×z=7z2×6z7z^{2} \times \sqrt{2 \times 3 \times z} = 7z^{2} \times \sqrt{6z}
  8. Multiply with coefficient: Multiply the result from Step 66 with the coefficient from Step 22.\newline20×7z2×6z=140z2×6z20 \times 7z^{2} \times \sqrt{6z} = 140z^{2} \times \sqrt{6z}

More problems from Simplify radical expressions with variables