Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-4-5i)*(1-i)

Multiply and simplify the following complex numbers:\newline(45i)(1i) (-4-5 i) \cdot(1-i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(45i)(1i) (-4-5 i) \cdot(1-i)
  1. Distribute terms: Distribute each term in the first complex number by each term in the second complex number.\newline(45i)(1i)=(4)(1)+(4)(i)+(5i)(1)+(5i)(i)(-4-5i)*(1-i) = (-4)*(1) + (-4)*(-i) + (-5i)*(1) + (-5i)*(-i)
  2. Multiply terms: Multiply the terms.\newline(4)(1)=4(-4)\cdot(1) = -4\newline(4)(i)=4i(-4)\cdot(-i) = 4i\newline(5i)(1)=5i(-5i)\cdot(1) = -5i\newline(5i)(i)=5i2(-5i)\cdot(-i) = 5i^2
  3. Simplify using i2i^2: Remember that i2=1i^2 = -1 and simplify.\newline5i2=5(1)=55i^2 = 5*(-1) = -5
  4. Combine like terms: Combine like terms.\newline(4)+(4i)+(5i)+(5)=45+(4i5i)=9i(-4) + (4i) + (-5i) + (-5) = -4 - 5 + (4i - 5i) = -9 - i

More problems from Multiply numbers written in scientific notation