Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-4+4i)*(3+2i)

Multiply and simplify the following complex numbers:\newline(4+4i)(3+2i) (-4+4 i) \cdot(3+2 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(4+4i)(3+2i) (-4+4 i) \cdot(3+2 i)
  1. Apply distributive property: Apply the distributive property (also known as the FOIL method for binomials) to multiply the complex numbers.\newline(4+4i)(3+2i)=(43)+(42i)+(4i3)+(4i2i)(-4+4i)*(3+2i) = (-4*3) + (-4*2i) + (4i*3) + (4i*2i)
  2. Multiply real and imaginary parts: Multiply the real parts and the imaginary parts separately.\newline(4×3)=12(-4 \times 3) = -12 (Real part)\newline(4×2i)=8i(-4 \times 2i) = -8i (Imaginary part)\newline(4i×3)=12i(4i \times 3) = 12i (Imaginary part)\newline(4i×2i)=8i2(4i \times 2i) = 8i^2 (Imaginary part squared, where i2=1i^2 = -1)
  3. Combine like terms: Combine the like terms (real with real and imaginary with imaginary).\newline12+(8i)+12i+8i2-12 + (-8i) + 12i + 8i^2\newlineSince i2=1i^2 = -1, we replace 8i28i^2 with 8(1)8(-1).\newline12+(8i)+12i8-12 + (-8i) + 12i - 8
  4. Simplify the expression: Simplify the expression by combining like terms.\newline128+(8i+12i)-12 - 8 + (-8i + 12i)\newline20+4i-20 + 4i

More problems from Multiply numbers written in scientific notation