Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-2+4i)*(5+i)

Multiply and simplify the following complex numbers:\newline(2+4i)(5+i) (-2+4 i) \cdot(5+i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(2+4i)(5+i) (-2+4 i) \cdot(5+i)
  1. Distribute terms: Distribute each term of the first complex number by each term of the second complex number.\newline(2+4i)(5+i)=(25)+(2i)+(4i5)+(4ii)(-2+4i)*(5+i) = (-2\cdot 5) + (-2\cdot i) + (4i\cdot 5) + (4i\cdot i)
  2. Multiply terms: Multiply the terms.\newline(2×5)=10(-2 \times 5) = -10\newline(2×i)=2i(-2 \times i) = -2i\newline(4i×5)=20i(4i \times 5) = 20i\newline(4i×i)=4i2(4i \times i) = 4i^2
  3. Simplify i2i^2: Remember that i2=1i^2 = -1 and simplify.\newline4i2=4(1)=44i^2 = 4*(-1) = -4
  4. Combine like terms: Combine like terms.\newline(10)+(2i)+(20i)+(4)(-10) + (-2i) + (20i) + (-4)
  5. Add real and imaginary parts: Add the real parts and the imaginary parts separately.\newlineReal parts: 10+(4)=14-10 + (-4) = -14\newlineImaginary parts: 2i+20i=18i-2i + 20i = 18i
  6. Write final answer: Write the final answer as a complex number. 14+18i-14 + 18i

More problems from Multiply numbers written in scientific notation