Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Multiply and simplify the following complex numbers:
\newline
(
1
−
5
i
)
⋅
(
3
−
2
i
)
(1-5 i) \cdot(3-2 i)
(
1
−
5
i
)
⋅
(
3
−
2
i
)
View step-by-step help
Home
Math Problems
Grade 8
Multiply numbers written in scientific notation
Full solution
Q.
Multiply and simplify the following complex numbers:
\newline
(
1
−
5
i
)
⋅
(
3
−
2
i
)
(1-5 i) \cdot(3-2 i)
(
1
−
5
i
)
⋅
(
3
−
2
i
)
Distribute terms:
Distribute each term in the first complex number by each term in the second complex number.
\newline
(
1
−
5
i
)
∗
(
3
−
2
i
)
=
1
∗
(
3
−
2
i
)
−
5
i
∗
(
3
−
2
i
)
(1-5i)*(3-2i) = 1*(3-2i) - 5i*(3-2i)
(
1
−
5
i
)
∗
(
3
−
2
i
)
=
1
∗
(
3
−
2
i
)
−
5
i
∗
(
3
−
2
i
)
Multiply real and imaginary parts:
Multiply the real parts and the imaginary parts separately.
\newline
1
×
3
−
1
×
2
i
−
5
i
×
3
+
5
i
×
2
i
1\times3 - 1\times2i - 5i\times3 + 5i\times2i
1
×
3
−
1
×
2
i
−
5
i
×
3
+
5
i
×
2
i
Combine like terms:
Combine like terms and remember that
i
2
=
−
1
i^2 = -1
i
2
=
−
1
.
\newline
1
×
3
=
3
1 \times 3 = 3
1
×
3
=
3
\newline
−
1
×
2
i
=
−
2
i
-1 \times 2i = -2i
−
1
×
2
i
=
−
2
i
\newline
−
5
i
×
3
=
−
15
i
-5i \times 3 = -15i
−
5
i
×
3
=
−
15
i
\newline
5
i
×
2
i
=
10
i
2
=
10
×
(
−
1
)
=
−
10
5i \times 2i = 10i^2 = 10 \times (-1) = -10
5
i
×
2
i
=
10
i
2
=
10
×
(
−
1
)
=
−
10
(since
i
2
=
−
1
i^2 = -1
i
2
=
−
1
)
Add real and imaginary parts:
Add the real parts and the imaginary parts together.
3
−
2
i
−
15
i
−
10
3 - 2i - 15i - 10
3
−
2
i
−
15
i
−
10
Combine real and imaginary numbers:
Combine the real numbers and the imaginary numbers.
(
3
−
10
)
+
(
−
2
i
−
15
i
)
(3 - 10) + (-2i - 15i)
(
3
−
10
)
+
(
−
2
i
−
15
i
)
Simplify expression:
Simplify the expression by adding the real parts and the imaginary parts.
\newline
3
−
10
=
−
7
3 - 10 = -7
3
−
10
=
−
7
\newline
−
2
i
−
15
i
=
−
17
i
-2i - 15i = -17i
−
2
i
−
15
i
=
−
17
i
Write final answer:
Write the final answer in the form of a complex number
(
a
+
b
i
)
(a + bi)
(
a
+
bi
)
.
\newline
−
7
−
17
i
-7 - 17i
−
7
−
17
i
More problems from Multiply numbers written in scientific notation
Question
Factor
16
a
+
72
16 a+72
16
a
+
72
to identify the equivalent expressions.
\newline
Choose
2
2
2
answers:
\newline
A
4
(
4
a
+
18
)
4(4 a+18)
4
(
4
a
+
18
)
\newline
B
8
(
2
a
+
9
)
8(2 a+9)
8
(
2
a
+
9
)
\newline
C
2
(
8
+
36
a
)
2(8+36 a)
2
(
8
+
36
a
)
\newline
D
2
(
8
a
+
72
)
2(8 a+72)
2
(
8
a
+
72
)
Get tutor help
Posted 1 year ago
Question
Factor
30
−
6
v
−
18
w
30-6 v-18 w
30
−
6
v
−
18
w
to identify the equivalent expressions.
\newline
Choose
2
2
2
answers:
\newline
A
2
(
15
−
12
v
)
2(15-12 v)
2
(
15
−
12
v
)
\newline
B
3
(
10
−
3
v
+
6
w
)
3(10-3 v+6 w)
3
(
10
−
3
v
+
6
w
)
\newline
c
6
(
5
−
v
−
3
w
)
6(5-v-3 w)
6
(
5
−
v
−
3
w
)
\newline
D
2
(
15
−
3
v
−
9
w
)
2(15-3 v-9 w)
2
(
15
−
3
v
−
9
w
)
Get tutor help
Posted 1 year ago
Question
Factor
24
m
−
12
p
+
72
24 m-12 p+72
24
m
−
12
p
+
72
to identify the equivalent expressions.
\newline
Choose
2
2
2
answers:
\newline
A
6
(
4
m
+
2
p
+
12
)
6(4 m+2 p+12)
6
(
4
m
+
2
p
+
12
)
\newline
B
2
(
12
m
−
6
p
+
36
)
2(12 m-6 p+36)
2
(
12
m
−
6
p
+
36
)
\newline
c
12
(
2
m
−
p
+
6
)
12(2 m-p+6)
12
(
2
m
−
p
+
6
)
\newline
D
24
(
m
−
12
p
+
3
)
24(m-12 p+3)
24
(
m
−
12
p
+
3
)
Get tutor help
Posted 1 year ago
Question
Factor
48
−
8
x
48-8 x
48
−
8
x
to identify the equivalent expressions.
\newline
Choose
2
2
2
answers:
\newline
A
3
(
16
−
8
x
)
3(16-8 x)
3
(
16
−
8
x
)
\newline
B
2
(
24
−
4
x
)
2(24-4 x)
2
(
24
−
4
x
)
\newline
c
8
(
6
−
x
)
8(6-x)
8
(
6
−
x
)
\newline
D
4
(
12
−
4
x
)
4(12-4 x)
4
(
12
−
4
x
)
Get tutor help
Posted 10 months ago
Question
Multiply and simplify the following complex numbers:
\newline
(
−
3
−
2
i
)
⋅
(
−
4
+
2
i
)
(-3-2 i) \cdot(-4+2 i)
(
−
3
−
2
i
)
⋅
(
−
4
+
2
i
)
Get tutor help
Posted 1 year ago
Question
Multiply and simplify the following complex numbers:
\newline
(
1
−
2
i
)
⋅
(
4
+
i
)
(1-2 i) \cdot(4+i)
(
1
−
2
i
)
⋅
(
4
+
i
)
Get tutor help
Posted 1 year ago
Question
Multiply and simplify the following complex numbers:
\newline
(
−
1
+
4
i
)
⋅
(
4
−
3
i
)
(-1+4 i) \cdot(4-3 i)
(
−
1
+
4
i
)
⋅
(
4
−
3
i
)
Get tutor help
Posted 1 year ago
Question
Multiply and simplify the following complex numbers:
\newline
(
−
4
−
4
i
)
⋅
(
−
5
−
3
i
)
(-4-4 i) \cdot(-5-3 i)
(
−
4
−
4
i
)
⋅
(
−
5
−
3
i
)
Get tutor help
Posted 1 year ago
Question
Multiply and simplify the following complex numbers:
\newline
(
1
+
5
i
)
⋅
(
−
3
−
i
)
(1+5 i) \cdot(-3-i)
(
1
+
5
i
)
⋅
(
−
3
−
i
)
Get tutor help
Posted 1 year ago
Question
Multiply and simplify the following complex numbers:
\newline
(
−
2
+
2
i
)
⋅
(
5
+
5
i
)
(-2+2 i) \cdot(5+5 i)
(
−
2
+
2
i
)
⋅
(
5
+
5
i
)
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant