Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(1-5i)*(3-2i)

Multiply and simplify the following complex numbers:\newline(15i)(32i) (1-5 i) \cdot(3-2 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(15i)(32i) (1-5 i) \cdot(3-2 i)
  1. Distribute terms: Distribute each term in the first complex number by each term in the second complex number.\newline(15i)(32i)=1(32i)5i(32i)(1-5i)*(3-2i) = 1*(3-2i) - 5i*(3-2i)
  2. Multiply real and imaginary parts: Multiply the real parts and the imaginary parts separately.\newline1×31×2i5i×3+5i×2i1\times3 - 1\times2i - 5i\times3 + 5i\times2i
  3. Combine like terms: Combine like terms and remember that i2=1i^2 = -1.\newline1×3=31 \times 3 = 3\newline1×2i=2i-1 \times 2i = -2i\newline5i×3=15i-5i \times 3 = -15i\newline5i×2i=10i2=10×(1)=105i \times 2i = 10i^2 = 10 \times (-1) = -10 (since i2=1i^2 = -1)
  4. Add real and imaginary parts: Add the real parts and the imaginary parts together. 32i15i103 - 2i - 15i - 10
  5. Combine real and imaginary numbers: Combine the real numbers and the imaginary numbers. (310)+(2i15i)(3 - 10) + (-2i - 15i)
  6. Simplify expression: Simplify the expression by adding the real parts and the imaginary parts.\newline310=73 - 10 = -7\newline2i15i=17i-2i - 15i = -17i
  7. Write final answer: Write the final answer in the form of a complex number (a+bi)(a + bi).\newline717i-7 - 17i

More problems from Multiply numbers written in scientific notation