Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-1-5i)*(1-2i)

Multiply and simplify the following complex numbers:\newline(15i)(12i) (-1-5 i) \cdot(1-2 i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(15i)(12i) (-1-5 i) \cdot(1-2 i)
  1. Apply distributive property: Apply the distributive property (also known as the FOIL method for binomials) to multiply the complex numbers.\newline(15i)(12i)=(1)(1)+(1)(2i)+(5i)(1)+(5i)(2i)(-1-5i)*(1-2i) = (-1)*(1) + (-1)*(-2i) + (-5i)*(1) + (-5i)*(-2i)
  2. Perform multiplication for each term: Perform the multiplication for each term.\newline(1)×(1)=1(-1)\times(1) = -1\newline(1)×(2i)=2i(-1)\times(-2i) = 2i\newline(5i)×(1)=5i(-5i)\times(1) = -5i\newline(5i)×(2i)=10i2(-5i)\times(-2i) = 10i^2
  3. Replace i2i^2 with 1-1: Remember that i2=1i^2 = -1, so replace i2i^2 with 1-1 in the last term.\newline10i2=10(1)=1010i^2 = 10(-1) = -10
  4. Combine like terms: Combine like terms (real with real and imaginary with imaginary).\newline(1)+(2i)+(5i)+(10)(-1) + (2i) + (-5i) + (-10)
  5. Simplify expression: Simplify the expression by adding/subtracting the real parts and the imaginary parts.\newlineReal: 110=11-1 - 10 = -11\newlineImaginary: 2i5i=3i2i - 5i = -3i
  6. Write final answer: Write the final answer as a complex number in the form a+bia + bi.\newline113i-11 - 3i

More problems from Multiply numbers written in scientific notation