Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Multiply and simplify the following complex numbers:

(-1-3i)*(-1+i)

Multiply and simplify the following complex numbers:\newline(13i)(1+i) (-1-3 i) \cdot(-1+i)

Full solution

Q. Multiply and simplify the following complex numbers:\newline(13i)(1+i) (-1-3 i) \cdot(-1+i)
  1. Distribute terms: Distribute each term in the first complex number by each term in the second complex number.\newline(13i)×(1+i)=(1×1)+(1×i)+(3i×1)+(3i×i)(-1-3i) \times (-1+i) = (-1 \times -1) + (-1 \times i) + (-3i \times -1) + (-3i \times i)
  2. Calculate multiplications: Calculate each multiplication.\newline(1×1)=1(-1 \times -1) = 1\newline(1×i)=i(-1 \times i) = -i\newline(3i×1)=3i(-3i \times -1) = 3i\newline(3i×i)=3i2(-3i \times i) = -3i^2 (Remember that i2=1i^2 = -1)
  3. Substitute and simplify: Substitute i2i^2 with 1-1 and simplify.\newline3i2=3(1)=3-3i^2 = -3(-1) = 3
  4. Combine like terms: Combine like terms.\newline1+3+(i+3i)=4+2i1 + 3 + (-i + 3i) = 4 + 2i

More problems from Multiply numbers written in scientific notation