Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the zeros of the function. Enter the solutions from least to greatest.

f(x)=(x-4)^(2)-25
lesser 
x=
greater 
x=

Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x4)225 f(x)=(x-4)^{2}-25 \newlinelesser x= x= \newlinegreater x= x=

Full solution

Q. Find the zeros of the function. Enter the solutions from least to greatest.\newlinef(x)=(x4)225 f(x)=(x-4)^{2}-25 \newlinelesser x= x= \newlinegreater x= x=
  1. Find zeros of the function: Set the function equal to zero to find its zeros.\newlinef(x)=(x4)225=0f(x) = (x - 4)^2 - 25 = 0
  2. Solve the quadratic equation: Solve the quadratic equation.\newline(x4)225=0(x - 4)^2 - 25 = 0\newlineAdd 2525 to both sides to isolate the squared term.\newline(x4)2=25(x - 4)^2 = 25
  3. Isolate the squared term: Take the square root of both sides.\newline(x4)2=±25\sqrt{(x - 4)^2} = \pm\sqrt{25}\newlinex4=±5x - 4 = \pm5
  4. Take the square root: Solve for x by adding 44 to both sides of the equation.\newlineFor the positive root:\newlinex4+4=5+4x - 4 + 4 = 5 + 4\newlinex=9x = 9\newlineFor the negative root:\newlinex4+4=5+4x - 4 + 4 = -5 + 4\newlinex=1x = -1
  5. Solve for x: Write the solutions in ascending order.\newlinelesser x=1x = -1\newlinegreater x=9x = 9

More problems from Transformations of absolute value functions: translations and reflections