Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

500*5^((y)/(3))=1
What is the solution of the equation?
Round your answer, if necessary, to the nearest thousandth.

y~~

5005y3=1 500 \cdot 5^{\frac{y}{3}}=1 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newliney y \approx

Full solution

Q. 5005y3=1 500 \cdot 5^{\frac{y}{3}}=1 \newlineWhat is the solution of the equation?\newlineRound your answer, if necessary, to the nearest thousandth.\newliney y \approx
  1. Write equation and solve for y: Write down the equation and start solving for y.\newlineWe have the equation 500500 \cdot 55^{\left(\frac{y}{33}\right)} = 11.\newlineTo solve for y, we first need to isolate the term with y, which is 55^{\left(\frac{y}{33}\right)}.\newlineDivide both sides of the equation by 500500.\newline55^{\left(\frac{y}{33}\right)} = \frac{11}{500500}
  2. Isolate term with y: Apply the logarithm to both sides of the equation to solve for the exponent.\newlineTaking the natural logarithm (ln) of both sides gives us:\newlineln(5(y3))=ln(1500)\ln(5^{(\frac{y}{3})}) = \ln(\frac{1}{500})
  3. Apply logarithm to both sides: Use the power property of logarithms to bring down the exponent.\newlineThe power property states that ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a).\newlineSo we have:\newline(y3)ln(5)=ln(1500)\left(\frac{y}{3}\right) \cdot \ln(5) = \ln\left(\frac{1}{500}\right)
  4. Use power property of logarithms: Solve for yy.\newlineFirst, we need to calculate ln(5)\ln(5) and ln(1500)\ln(\frac{1}{500}).\newlineThen we can multiply both sides of the equation by 33 to isolate yy.\newliney=3ln(1500)ln(5)y = \frac{3 \cdot \ln(\frac{1}{500})}{\ln(5)}
  5. Solve for yy: Perform the calculations.\newlineUsing a calculator, we find:\newlineln(5)1.60944\ln(5) \approx 1.60944\newlineln(1/500)6.21461\ln(1/500) \approx -6.21461\newlineNow substitute these values into the equation for yy:\newliney=3×(6.21461)1.60944y = \frac{3 \times (-6.21461)}{1.60944}\newliney11.552y \approx -11.552
  6. Perform calculations: Round the answer to the nearest thousandth.\newliney11.552y \approx -11.552\newlineSince we are asked to round to the nearest thousandth, the final answer is:\newliney11.552y \approx -11.552

More problems from Solve exponential equations using common logarithms