Q. 500⋅53y=1What is the solution of the equation?Round your answer, if necessary, to the nearest thousandth.y≈
Write equation and solve for : Write down the equation and start solving for .We have the equation .\newlineTo solve for y, we first need to isolate the term with y, which is 555^{\left(\frac{y}{333}\right)}.\newlineDivide both sides of the equation by 500500500.\newline555^{\left(\frac{y}{333}\right)} = \frac{111}{500500500}
Isolate term with y: Apply the logarithm to both sides of the equation to solve for the exponent.\newlineTaking the natural logarithm (ln) of both sides gives us:\newlineln(5(y3))=ln(1500)\ln(5^{(\frac{y}{3})}) = \ln(\frac{1}{500})ln(5(3y))=ln(5001)
Apply logarithm to both sides: Use the power property of logarithms to bring down the exponent.\newlineThe power property states that ln(ab)=b⋅ln(a)\ln(a^b) = b \cdot \ln(a)ln(ab)=b⋅ln(a).\newlineSo we have:\newline(y3)⋅ln(5)=ln(1500)\left(\frac{y}{3}\right) \cdot \ln(5) = \ln\left(\frac{1}{500}\right)(3y)⋅ln(5)=ln(5001)
Use power property of logarithms: Solve for yyy.\newlineFirst, we need to calculate ln(5)\ln(5)ln(5) and ln(1500)\ln(\frac{1}{500})ln(5001).\newlineThen we can multiply both sides of the equation by 333 to isolate yyy.\newliney=3⋅ln(1500)ln(5)y = \frac{3 \cdot \ln(\frac{1}{500})}{\ln(5)}y=ln(5)3⋅ln(5001)
Solve for yyy: Perform the calculations.\newlineUsing a calculator, we find:\newlineln(5)≈1.60944\ln(5) \approx 1.60944ln(5)≈1.60944\newlineln(1/500)≈−6.21461\ln(1/500) \approx -6.21461ln(1/500)≈−6.21461\newlineNow substitute these values into the equation for yyy:\newliney=3×(−6.21461)1.60944y = \frac{3 \times (-6.21461)}{1.60944}y=1.609443×(−6.21461)\newliney≈−11.552y \approx -11.552y≈−11.552
Perform calculations: Round the answer to the nearest thousandth.\newliney≈−11.552y \approx -11.552y≈−11.552\newlineSince we are asked to round to the nearest thousandth, the final answer is:\newliney≈−11.552y \approx -11.552y≈−11.552
More problems from Solve exponential equations using common logarithms