Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[H(x)=|(x)/(2)|],[h(x)=H^(')(x)],[int_(-6)^(-2)h(x)dx=]:}

H(x)=x2h(x)=H(x)62h(x)dx= \begin{array}{l}H(x)=\left|\frac{x}{2}\right| \\ h(x)=H^{\prime}(x) \\ \int_{-6}^{-2} h(x) d x=\end{array}

Full solution

Q. H(x)=x2h(x)=H(x)62h(x)dx= \begin{array}{l}H(x)=\left|\frac{x}{2}\right| \\ h(x)=H^{\prime}(x) \\ \int_{-6}^{-2} h(x) d x=\end{array}
  1. Find Derivative of H(x): First, we need to find the derivative of H(x) which is h(x).\newlineH(x) = x2\left|\frac{x}{2}\right|, so we need to consider the absolute value.
  2. Consider Absolute Value: For x < 0, H(x)=x2H(x) = -\frac{x}{2}, so h(x)=ddx(x2)=12h(x) = \frac{d}{dx}(-\frac{x}{2}) = -\frac{1}{2}. For x > 0, H(x)=x2H(x) = \frac{x}{2}, so h(x)=ddx(x2)=12h(x) = \frac{d}{dx}(\frac{x}{2}) = \frac{1}{2}. Since we're integrating from 6-6 to 2-2, we only need h(x)h(x) for x < 0.
  3. Integrate h(x)h(x) from 6-6 to 2-2: Now we integrate h(x)h(x) from 6-6 to 2-2. 6212dx=12×x62\int_{-6}^{-2} -\frac{1}{2} \, dx = -\frac{1}{2} \times x \bigg|_{-6}^{-2}.
  4. Plug in Limits: Plug in the limits of integration.\newline(12×2)(12×6)=13=2(-\frac{1}{2} \times -2) - (-\frac{1}{2} \times -6) = 1 - 3 = -2.

More problems from Find derivatives of sine and cosine functions