Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[h(x)=(5-6x)^(5)],[h^(')(x)=?]:}
Choose 1 answer:
(A) 
-30(5-6x)^(4)
(B) 
(-6)^(5)
(C) 
-6x^(5)+5x^(4)(5-6x)
(D) 
5(5-6x)^(4)

h(x)amp;=(56x)5h(x)amp;=? \begin{aligned} h(x) & =(5-6 x)^{5} \\ h^{\prime}(x) & =? \end{aligned} \newlineChoose 11 answer:\newline(A) 30(56x)4 -30(5-6 x)^{4} \newline(B) (6)5 (-6)^{5} \newline(C) 6x5+5x4(56x) -6 x^{5}+5 x^{4}(5-6 x) \newline(D) 5(56x)4 5(5-6 x)^{4}

Full solution

Q. h(x)=(56x)5h(x)=? \begin{aligned} h(x) & =(5-6 x)^{5} \\ h^{\prime}(x) & =? \end{aligned} \newlineChoose 11 answer:\newline(A) 30(56x)4 -30(5-6 x)^{4} \newline(B) (6)5 (-6)^{5} \newline(C) 6x5+5x4(56x) -6 x^{5}+5 x^{4}(5-6 x) \newline(D) 5(56x)4 5(5-6 x)^{4}
  1. Apply Power and Chain Rule: Apply the power rule combined with the chain rule to differentiate h(x)h(x). The power rule states that the derivative of xnx^n is nx(n1)n\cdot x^{(n-1)}. The chain rule states that the derivative of a composite function f(g(x))f(g(x)) is f(g(x))g(x)f'(g(x))\cdot g'(x). In this case, we have a composite function where the outer function is u5u^5 and the inner function is u=56xu = 5 - 6x. We will first take the derivative of the outer function with respect to uu and then multiply it by the derivative of the inner function with respect to xx.
  2. Differentiate Outer Function: Differentiate the outer function with respect to uu. The derivative of u5u^5 with respect to uu is 5u51=5u45u^{5-1} = 5u^4.
  3. Differentiate Inner Function: Differentiate the inner function with respect to xx. The derivative of 56x5 - 6x with respect to xx is 6-6.
  4. Apply Chain Rule: Apply the chain rule by multiplying the derivatives from Step 22 and Step 33.\newlineh(x)=5(56x)4(6)h'(x) = 5\cdot(5 - 6x)^4 \cdot (-6)
  5. Simplify Expression: Simplify the expression. h(x)=30(56x)4h'(x) = -30(5 - 6x)^4

More problems from Find derivatives of sine and cosine functions