Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=sqrt(sin(x))],[g^(')(x)=?]:}
Choose 1 answer:
(A) 
sqrt(cos(x))
(B) 
(cos(sqrtx))/(2sqrtx)
C 
(cos(x))/(2sqrt(sin(x)))
(D) 
([sin(x)]^(-(1)/(2)))/(2)

g(x)=sin(x)g(x)=? \begin{array}{l} g(x)=\sqrt{\sin (x)} \\ g^{\prime}(x)=? \end{array} \newlineChoose 11 answer:\newline(A) cos(x) \sqrt{\cos (x)} \newline(B) cos(x)2x \frac{\cos (\sqrt{x})}{2 \sqrt{x}} \newline(C) cos(x)2sin(x) \frac{\cos (x)}{2 \sqrt{\sin (x)}} \newline(D) [sin(x)]122 \frac{[\sin (x)]^{-\frac{1}{2}}}{2}

Full solution

Q. g(x)=sin(x)g(x)=? \begin{array}{l} g(x)=\sqrt{\sin (x)} \\ g^{\prime}(x)=? \end{array} \newlineChoose 11 answer:\newline(A) cos(x) \sqrt{\cos (x)} \newline(B) cos(x)2x \frac{\cos (\sqrt{x})}{2 \sqrt{x}} \newline(C) cos(x)2sin(x) \frac{\cos (x)}{2 \sqrt{\sin (x)}} \newline(D) [sin(x)]122 \frac{[\sin (x)]^{-\frac{1}{2}}}{2}
  1. Apply Chain Rule: Apply the chain rule to differentiate g(x)=sin(x)g(x) = \sqrt{\sin(x)}.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlineLet u=sin(x)u = \sin(x), then g(x)=ug(x) = \sqrt{u}.
  2. Differentiate Outer Function: Differentiate the outer function with respect to uu, where the outer function is u\sqrt{u}. The derivative of u\sqrt{u} with respect to uu is (1/2)u1/2(1/2)u^{-1/2}. (d/du)(u)=(1/2)u1/2(d/du)(\sqrt{u}) = (1/2)u^{-1/2}
  3. Differentiate Inner Function: Differentiate the inner function u=sin(x)u = \sin(x) with respect to xx. The derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x). ddx(sin(x))=cos(x)\frac{d}{dx}(\sin(x)) = \cos(x)
  4. Apply Chain Rule Multiplication: Apply the chain rule by multiplying the derivatives from Step 22 and Step 33.\newlineg(x)=ddu(u)ddx(u)g'(x) = \frac{d}{du}(\sqrt{u}) \cdot \frac{d}{dx}(u)\newlineg(x)=12u12cos(x)g'(x) = \frac{1}{2}u^{-\frac{1}{2}} \cdot \cos(x)\newlineSince u=sin(x)u = \sin(x), we substitute back to get:\newlineg(x)=12(sin(x))12cos(x)g'(x) = \frac{1}{2}(\sin(x))^{-\frac{1}{2}} \cdot \cos(x)
  5. Simplify Expression: Simplify the expression for g(x)g'(x).g(x)=cos(x)2sin(x)g'(x) = \frac{\cos(x)}{2\sqrt{\sin(x)}}This matches answer choice (C).

More problems from Find derivatives of using multiple formulae