Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

0αln(cot(α)+tan(x))dx\int_{0}^{\alpha} \ln(\cot(\alpha) + \tan(x)) \, dx, where α\alpha is in the interval 0,π20, \frac{\pi}{2}

Full solution

Q. 0αln(cot(α)+tan(x))dx\int_{0}^{\alpha} \ln(\cot(\alpha) + \tan(x)) \, dx, where α\alpha is in the interval 0,π20, \frac{\pi}{2}
  1. Simplify integrand: First, let's simplify the integrand ln(cot(α)+tan(x))\ln(\cot(\alpha) + \tan(x)).cot(α)\cot(\alpha) is constant with respect to xx, so we can take it out of the integral. We get 0αln(cot(α))dx+0αln(tan(x))dx\int_{0}^{\alpha} \ln(\cot(\alpha)) \, dx + \int_{0}^{\alpha} \ln(\tan(x)) \, dx.
  2. Integrate ln(cot(α))\ln(\cot(\alpha)): Now, let's integrate the first part 0αln(cot(α))dx\int_{0}^{\alpha} \ln(\cot(\alpha)) \, dx. Since ln(cot(α))\ln(\cot(\alpha)) is a constant, the integral is ln(cot(α))x\ln(\cot(\alpha)) \cdot x evaluated from 00 to α\alpha. This gives us αln(cot(α))\alpha \cdot \ln(\cot(\alpha)).
  3. Integrate ln(tan(x))\ln(\tan(x)): Next, we integrate the second part 0αln(tan(x))dx\int_{0}^{\alpha} \ln(\tan(x)) \, dx. This is a bit trickier, we can use the substitution method. Let u=tan(x)u = \tan(x), then du=sec2(x)dxdu = \sec^2(x) \, dx. But we don't have sec2(x)\sec^2(x) in our integral, so this approach doesn't work.

More problems from Determine end behavior of polynomial and rational functions