Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[F(x)=int_(-2)^(sin(x))3tdt],[F^(')(x)=]:}

F(x)=2sin(x)3tdtF(x)= \begin{array}{l}F(x)=\int_{-2}^{\sin (x)} 3 t d t \\ F^{\prime}(x)=\end{array}

Full solution

Q. F(x)=2sin(x)3tdtF(x)= \begin{array}{l}F(x)=\int_{-2}^{\sin (x)} 3 t d t \\ F^{\prime}(x)=\end{array}
  1. Identify Function and Limits: Identify the function inside the integral and the limits of integration. F(x)=2sin(x)3tdtF(x) = \int_{-2}^{\sin(x)} 3t \, dt
  2. Apply Fundamental Theorem: Apply the Fundamental Theorem of Calculus Part 11, which states that if F(x)F(x) is the integral of f(t)f(t) from aa to xx, then F(x)=f(x)F'(x) = f(x).\newlineF(x)=3sin(x)F'(x) = 3\sin(x)
  3. Check Differentiation: Check for any mistakes in the differentiation process.\newlineNo mistakes found.

More problems from Find derivatives of sine and cosine functions