Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=-3e^(x)" and "],[f(1)=12-3e.],[f(0)=◻]:}

f(x)=3ex and f(1)=123e.f(0)= \begin{array}{l}f^{\prime}(x)=-3 e^{x} \text { and } f(1)=12-3 e . \\ f(0)=\square\end{array}

Full solution

Q. f(x)=3ex and f(1)=123e.f(0)= \begin{array}{l}f^{\prime}(x)=-3 e^{x} \text { and } f(1)=12-3 e . \\ f(0)=\square\end{array}
  1. Integrate f(x)f'(x): To find f(0)f(0), we need to integrate the derivative f(x)=3exf'(x) = -3e^x to get f(x)f(x). Let's integrate f(x)f'(x) to find the general form of f(x)f(x).\newlinef(x)dx=(3ex)dx\int f'(x) \, dx = \int (-3e^x) \, dx\newlinef(x)=3exdxf(x) = -3\int e^x \, dx\newlinef(x)=3ex+Cf(x) = -3e^x + C, where CC is the constant of integration.
  2. Find Constant C: Now we need to find the value of the constant CC using the given condition f(1)=123ef(1) = 12 - 3e. Let's substitute x=1x = 1 into f(x)f(x) to find CC. f(1)=3e1+C=123ef(1) = -3e^1 + C = 12 - 3e C=123e+3eC = 12 - 3e + 3e C=12C = 12
  3. Write Complete Function: With the value of CC found, we can now write the complete function f(x)f(x):f(x)=3ex+12f(x) = -3e^x + 12
  4. Find f(0)f(0): Finally, we can find f(0)f(0) by substituting x=0x = 0 into f(x)f(x):
    f(0)=3e0+12f(0) = -3e^0 + 12
    f(0)=3(1)+12f(0) = -3(1) + 12
    f(0)=3+12f(0) = -3 + 12
    f(0)=9f(0) = 9

More problems from Find derivatives of sine and cosine functions