Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=-(320)/(x^(6))" and "f(1)=30.],[f(-2)=]:}

f(x)=320x6 and f(1)=30.f(2)= \begin{array}{l}f^{\prime}(x)=-\frac{320}{x^{6}} \text { and } f(1)=30 . \\ f(-2)=\end{array}

Full solution

Q. f(x)=320x6 and f(1)=30.f(2)= \begin{array}{l}f^{\prime}(x)=-\frac{320}{x^{6}} \text { and } f(1)=30 . \\ f(-2)=\end{array}
  1. Integrate f(x)f'(x): To find f(2)f(-2), we need to integrate f(x)f'(x) to get f(x)f(x). Let's integrate f(x)=320x6f'(x) = -\frac{320}{x^{6}}.f(x)dx=320x6dx\int f'(x) \, dx = \int -\frac{320}{x^{6}} \, dxf(x)=320x6dxf(x) = \int -320x^{-6} \, dxf(x)=3205x5+Cf(x) = \frac{320}{5} * x^{-5} + C, where CC is the constant of integration.
  2. Find Constant C: Now we use the given f(1)=30f(1) = 30 to find the constant C.30=3205×15+C30 = \frac{320}{5} \times 1^{-5} + C30=3205+C30 = \frac{320}{5} + CC=303205C = 30 - \frac{320}{5}C=3064C = 30 - 64C=34C = -34
  3. Write Function f(x): With C found, we can write the function f(x) as:\newlinef(x)=3205×x534f(x) = \frac{320}{5} \times x^{-5} - 34
  4. Find f(2)f(-2): Now we can find f(2)f(-2) by plugging in x=2x = -2 into the function f(x)f(x).
    f(2)=3205×(2)534f(-2) = \frac{320}{5} \times (-2)^{-5} - 34
    f(2)=3205×1(2)534f(-2) = \frac{320}{5} \times \frac{1}{(-2)^5} - 34
    f(2)=3205×13234f(-2) = \frac{320}{5} \times \frac{1}{-32} - 34
    f(2)=320(5×32)34f(-2) = -\frac{320}{(5\times32)} - 34
    f(2)=234f(-2) = -2 - 34
    f(2)=36f(-2) = -36

More problems from Find derivatives of sine and cosine functions