Integrate f′(x): To find f(−2), we need to integrate f′(x) to get f(x). Let's integrate f′(x)=−x6320.∫f′(x)dx=∫−x6320dxf(x)=∫−320x−6dxf(x)=5320∗x−5+C, where C is the constant of integration.
Find Constant C: Now we use the given f(1)=30 to find the constant C.30=5320×1−5+C30=5320+CC=30−5320C=30−64C=−34
Write Function f(x): With C found, we can write the function f(x) as:f(x)=5320×x−5−34
Find f(−2): Now we can find f(−2) by plugging in x=−2 into the function f(x). f(−2)=5320×(−2)−5−34 f(−2)=5320×(−2)51−34 f(−2)=5320×−321−34 f(−2)=−(5×32)320−34 f(−2)=−2−34 f(−2)=−36
More problems from Find derivatives of sine and cosine functions