Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f(3)=-1" and "f^(')(3)=0],[g(x)=x^(3)]:}
Evaluate 
(d)/(dx)[f(x)*g(x)] at 
x=3.

f(3)=1 and f(3)=0g(x)=x3 \begin{array}{l} f(3)=-1 \text { and } f^{\prime}(3)=0 \\ g(x)=x^{3} \end{array} \newlineEvaluate ddx[f(x)g(x)] \frac{d}{d x}[f(x) \cdot g(x)] at x=3 x=3 .

Full solution

Q. f(3)=1 and f(3)=0g(x)=x3 \begin{array}{l} f(3)=-1 \text { and } f^{\prime}(3)=0 \\ g(x)=x^{3} \end{array} \newlineEvaluate ddx[f(x)g(x)] \frac{d}{d x}[f(x) \cdot g(x)] at x=3 x=3 .
  1. Identify Rule: Identify the rule for differentiating a product of two functions.\newlineProduct Rule: (ddx)[u(x)v(x)]=u(x)v(x)+u(x)v(x)(\frac{d}{dx})[u(x)\cdot v(x)] = u'(x)\cdot v(x) + u(x)\cdot v'(x)
  2. Differentiate Functions: Differentiate f(x)f(x) and g(x)g(x) separately.f(x)f'(x) is given as 00 and g(x)g'(x) is the derivative of x3x^3, which is 3x23x^2.
  3. Apply Product Rule: Plug in the derivatives and the original functions into the Product Rule.\newline(ddx)[f(x)g(x)]=f(x)g(x)+f(x)g(x)(\frac{d}{dx})[f(x)*g(x)] = f'(x)*g(x) + f(x)*g'(x)\newline(ddx)[f(x)g(x)]=0x3+(1)3x2(\frac{d}{dx})[f(x)*g(x)] = 0*x^3 + (-1)*3x^2
  4. Evaluate at x=3x=3: Evaluate the expression at x=3x=3.
    ddx[f(x)g(x)]\frac{d}{dx}[f(x)*g(x)] at x=3x=3 = 033+(1)3320\cdot3^3 + (-1)\cdot3\cdot3^2
    ddx[f(x)g(x)]\frac{d}{dx}[f(x)*g(x)] at x=3x=3 = 0+(1)390 + (-1)\cdot3\cdot9
  5. Simplify Final Answer: Simplify the expression to find the final answer.\newline(ddx)[f(x)g(x)](\frac{d}{dx})[f(x)*g(x)] at x=3x=3 = 0270 - 27\newline(ddx)[f(x)g(x)](\frac{d}{dx})[f(x)*g(x)] at x=3x=3 = 27-27

More problems from Find derivatives of sine and cosine functions