Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
{
f
(
1
)
=
−
3
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
\begin{cases} f(1)=-3 \ f(n)=2\cdot f(n-1)+1 \end{cases}
{
f
(
1
)
=
−
3
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
,
f
(
2
)
=
f(2)=
f
(
2
)
=
View step-by-step help
Home
Math Problems
Calculus
Find higher derivatives of rational and radical functions
Full solution
Q.
{
f
(
1
)
=
−
3
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
\begin{cases} f(1)=-3 \ f(n)=2\cdot f(n-1)+1 \end{cases}
{
f
(
1
)
=
−
3
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
,
f
(
2
)
=
f(2)=
f
(
2
)
=
Find
f
(
2
)
f(2)
f
(
2
)
:
\newline
First, we need to find
f
(
2
)
f(2)
f
(
2
)
using the given recursive formula. We know
f
(
1
)
=
−
3
f(1) = -3
f
(
1
)
=
−
3
.
Use Recursive Formula:
\newline
The formula given is
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
f(n) = 2 \cdot f(n-1) + 1
f
(
n
)
=
2
⋅
f
(
n
−
1
)
+
1
. So, let's plug in
n
=
2
n = 2
n
=
2
.
\newline
f
(
2
)
=
2
⋅
f
(
1
)
+
1
f(2) = 2 \cdot f(1) + 1
f
(
2
)
=
2
⋅
f
(
1
)
+
1
Substitute
f
(
1
)
f(1)
f
(
1
)
:
Substitute
f
(
1
)
=
−
3
f(1) = -3
f
(
1
)
=
−
3
into the equation:
f
(
2
)
=
2
×
(
−
3
)
+
1
f(2) = 2 \times (-3) + 1
f
(
2
)
=
2
×
(
−
3
)
+
1
Calculate:
\newline
Calculate:
\newline
f
(
2
)
=
−
6
+
1
=
−
5
f(2) = -6 + 1 = -5
f
(
2
)
=
−
6
+
1
=
−
5
More problems from Find higher derivatives of rational and radical functions
Question
h
(
x
)
=
(
5
−
6
x
)
5
h
′
(
x
)
=
?
\begin{aligned} h(x) & =(5-6 x)^{5} \\ h^{\prime}(x) & =? \end{aligned}
h
(
x
)
h
′
(
x
)
=
(
5
−
6
x
)
5
=
?
\newline
Choose
1
1
1
answer:
\newline
(A)
−
6
x
5
+
5
x
4
(
5
−
6
x
)
-6 x^{5}+5 x^{4}(5-6 x)
−
6
x
5
+
5
x
4
(
5
−
6
x
)
\newline
(B)
−
30
(
5
−
6
x
)
4
-30(5-6 x)^{4}
−
30
(
5
−
6
x
)
4
\newline
(C)
(
−
6
)
5
(-6)^{5}
(
−
6
)
5
\newline
(D)
5
(
5
−
6
x
)
4
5(5-6 x)^{4}
5
(
5
−
6
x
)
4
Get tutor help
Posted 1 year ago
Question
Find
d
2
d
x
2
[
2
sin
(
−
4
x
−
3
)
]
\frac{d^{2}}{d x^{2}}[2 \sin (-4 x-3)]
d
x
2
d
2
[
2
sin
(
−
4
x
−
3
)]
.
Get tutor help
Posted 1 year ago
Question
f
(
x
)
=
x
11
f
′
(
x
)
=
\begin{array}{l}f(x)=x^{11} \\ f^{\prime}(x)=\end{array}
f
(
x
)
=
x
11
f
′
(
x
)
=
Get tutor help
Posted 1 year ago
Question
f
′
(
x
)
=
5
e
x
and
f
(
7
)
=
40
+
5
e
7
.
f
(
0
)
=
□
\begin{array}{l}f^{\prime}(x)=5 e^{x} \text { and } f(7)=40+5 e^{7} . \\ f(0)=\square\end{array}
f
′
(
x
)
=
5
e
x
and
f
(
7
)
=
40
+
5
e
7
.
f
(
0
)
=
□
Get tutor help
Posted 1 year ago
Question
f
′
(
x
)
=
12
x
2
−
6
x
+
2
and
f
(
−
1
)
=
3.
f
(
2
)
=
\begin{array}{l}f^{\prime}(x)=12 x^{2}-6 x+2 \text { and } f(-1)=3 . \\ f(2)=\end{array}
f
′
(
x
)
=
12
x
2
−
6
x
+
2
and
f
(
−
1
)
=
3.
f
(
2
)
=
Get tutor help
Posted 1 year ago
Question
f
′
(
x
)
=
−
27
e
x
and
f
(
6
)
=
36
−
27
e
6
.
f
(
0
)
=
□
\begin{array}{l}f^{\prime}(x)=-27 e^{x} \text { and } f(6)=36-27 e^{6} . \\ f(0)=\square\end{array}
f
′
(
x
)
=
−
27
e
x
and
f
(
6
)
=
36
−
27
e
6
.
f
(
0
)
=
□
Get tutor help
Posted 1 year ago
Question
f
′
(
x
)
=
−
5
e
x
and
f
(
3
)
=
22
−
5
e
3
.
f
(
0
)
=
□
\begin{array}{l}f^{\prime}(x)=-5 e^{x} \text { and } f(3)=22-5 e^{3} . \\ f(0)=\square\end{array}
f
′
(
x
)
=
−
5
e
x
and
f
(
3
)
=
22
−
5
e
3
.
f
(
0
)
=
□
Get tutor help
Posted 1 year ago
Question
T
(
x
)
=
e
x
2
+
8
x
x
4
+
7
,
T
′
(
x
)
=
T(x) = \frac{e^{x^2 + 8x}}{\sqrt{x^4 + 7}},\quad T'(x) =
T
(
x
)
=
x
4
+
7
e
x
2
+
8
x
,
T
′
(
x
)
=
Get tutor help
Posted 1 year ago
Question
F
(
x
)
=
4
x
2
−
5
x
F(x)=4 x^{2}-5 x
F
(
x
)
=
4
x
2
−
5
x
\newline
f
(
x
)
=
F
′
(
x
)
∫
1
4
f
(
x
)
d
x
=
\begin{array}{l}f(x)=F^{\prime}(x) \\ \int_{1}^{4} f(x) d x=\end{array}
f
(
x
)
=
F
′
(
x
)
∫
1
4
f
(
x
)
d
x
=
Get tutor help
Posted 1 year ago
Question
G
(
x
)
=
(
x
+
3
)
2
g
(
x
)
=
G
′
(
x
)
∫
−
1
7
g
(
x
)
d
x
=
\begin{array}{l}G(x)=(x+3)^{2} \\ g(x)=G^{\prime}(x) \\ \int_{-1}^{7} g(x) d x=\end{array}
G
(
x
)
=
(
x
+
3
)
2
g
(
x
)
=
G
′
(
x
)
∫
−
1
7
g
(
x
)
d
x
=
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant