Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[h(x)=(5-6x)^(5)],[h^(')(x)=?]:}
Choose 1 answer:
(A) 
-6x^(5)+5x^(4)(5-6x)
(B) 
-30(5-6x)^(4)
(C) 
(-6)^(5)
(D) 
5(5-6x)^(4)

h(x)amp;=(56x)5h(x)amp;=? \begin{aligned} h(x) & =(5-6 x)^{5} \\ h^{\prime}(x) & =? \end{aligned} \newlineChoose 11 answer:\newline(A) 6x5+5x4(56x) -6 x^{5}+5 x^{4}(5-6 x) \newline(B) 30(56x)4 -30(5-6 x)^{4} \newline(C) (6)5 (-6)^{5} \newline(D) 5(56x)4 5(5-6 x)^{4}

Full solution

Q. h(x)=(56x)5h(x)=? \begin{aligned} h(x) & =(5-6 x)^{5} \\ h^{\prime}(x) & =? \end{aligned} \newlineChoose 11 answer:\newline(A) 6x5+5x4(56x) -6 x^{5}+5 x^{4}(5-6 x) \newline(B) 30(56x)4 -30(5-6 x)^{4} \newline(C) (6)5 (-6)^{5} \newline(D) 5(56x)4 5(5-6 x)^{4}
  1. Identify Functions: To find the derivative of the function h(x)=(56x)5h(x) = (5 - 6x)^5, we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Find Derivatives: First, let's identify the outer function and the inner function. The outer function is f(u)=u5f(u) = u^5 and the inner function is u(x)=56xu(x) = 5 - 6x. We need to find the derivatives of both functions.
  3. Apply Chain Rule: The derivative of the outer function f(u)=u5f(u) = u^5 with respect to uu is f(u)=5u4f'(u) = 5u^4.
  4. Substitute Derivatives: The derivative of the inner function u(x)=56xu(x) = 5 - 6x with respect to xx is u(x)=6u'(x) = -6.
  5. Simplify Expression: Now, we apply the chain rule: h(x)=f(u(x))u(x)h'(x) = f'(u(x)) \cdot u'(x). Substituting the derivatives we found, we get h(x)=5(56x)4(6)h'(x) = 5(5 - 6x)^4 \cdot (-6).
  6. Simplify Expression: Now, we apply the chain rule: h(x)=f(u(x))u(x)h'(x) = f'(u(x)) \cdot u'(x). Substituting the derivatives we found, we get h(x)=5(56x)4(6)h'(x) = 5(5 - 6x)^4 \cdot (-6). Simplify the expression by multiplying the constants: h(x)=30(56x)4h'(x) = -30(5 - 6x)^4.

More problems from Find higher derivatives of rational and radical functions