Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

F(x)=4x^(2)-5x

{:[f(x)=F^(')(x)],[int_(1)^(4)f(x)dx=]:}

F(x)=4x25x F(x)=4 x^{2}-5 x \newlinef(x)=F(x)14f(x)dx= \begin{array}{l}f(x)=F^{\prime}(x) \\ \int_{1}^{4} f(x) d x=\end{array}

Full solution

Q. F(x)=4x25x F(x)=4 x^{2}-5 x \newlinef(x)=F(x)14f(x)dx= \begin{array}{l}f(x)=F^{\prime}(x) \\ \int_{1}^{4} f(x) d x=\end{array}
  1. Calculate Total Tape Needed: Total tape needed is 8,000cm8,000\,\text{cm}, and each roll has 2,000cm2,000\,\text{cm}.
  2. Divide by Amount on Each Roll: Divide the total tape needed by the amount on each roll: 8,000cm÷2,000cm.8,000 \, \text{cm} \div 2,000 \, \text{cm}.
  3. Calculate Division: Calculate the division: 8,000÷2,000=48,000 \div 2,000 = 4.
  4. Order Rolls of Tape: The electrician needs to order 44 rolls of tape.

More problems from Find higher derivatives of rational and radical functions